
Flexible Artifact-Driven Automation
of Product Design Processes

Ole Eckermann and Matthias Weidlich

Hasso Plattner Institute at the University of Potsdam, Germany
Ole.Eckermann@student.hpi.uni-potsdam.de

Matthias.Weidlich@hpi.uni-potsdam.de

Abstract. Automated support of business processes by information
systems can be seen as state-of-the-art for many domains, such as pro-
duction planning or customer relationship management. A myriad of
approaches to the automation of business processes in these domains
has been proposed. However, these approaches are not suited for highly
creative processes, as they are observed in the field of innovative product
design. These processes require a high degree of flexibility of the process
implementation. In this paper, we focus on product design processes and
propose a methodology for the implementation of supporting workflows.
In order to cope with the imposed flexibility requirements, we follow
an artifact-centric approach. Based on high-level process models, object
life-cycle models are derived. Those are manually enriched and used for
automatic generation of an executable workflow model. We also present
an implementation of our approach.

Keywords: process automation, flexibility, artifact-centric, object life-
cycles, methodology

1 Introduction

Since process orientation has been brought forward as a paradigm for structuring
enterprises, process awareness emerged not only as an organizational principle,
but had an impact on the design of information systems, cf., [1,2]. Process-aware
information systems and workflow technology gained importance for the support
of business processes in various domains [3], such as production planning or
customer relationship management. This trend was manifested in a myriad of
approaches to the automation of business processes and various standardization
efforts as, for instance, WS-BPEL [4] and the WfMC reference model [5]. However,
business processes in certain domains turn out to impose requirements on their
implementation that are hard to address using common imperative workflow
technology. An example for such a setting are clinical pathways that describe
the different steps during interdisciplinary diagnosis and clinical treatment of
patients in a hospital [6]. Information systems supporting this kind of processes,
for instance, should allow for ad-hoc deviations of workflow instances. As such a
feature is not supported by common workflow technology, specialized systems
like the ADEPT system [7] have been developed.

mailto:Ole.Eckermann@student.hpi.uni-potsdam.de
mailto:Matthias.Weidlich@hpi.uni-potsdam.de

2 Ole Eckermann, Matthias Weidlich

In this paper, we focus on another example for processes that require a high-
degree of flexibility of their implementation. That is, we consider the workflow
support for highly creative processes as observed in the field of innovative product
design. Although the actual design of consumer products is a manual task, the
internal treatment of design proposals follows on predefined processes. Further,
a high degree of repetition of these processes along with the need to track
design decisions suggests to support such processes with according workflow
technology. Unfortunately, processes for the treatment of product design proposals
impose particular requirements on the underlying implementation, among them
state-driven execution of activities and the possibility to react to externally
triggered state changes of the proposals accordingly. These requirements suggest
to approach the implementation of product design processes with the case-
handling paradigm [8,9] or an artifact-driven approach [10,11]. We take up these
ideas and show how they are adapted and extended for the concrete use case of
product design processes.

Our contribution is a methodology for flexible artifact-driven automation of
product design processes. With respect to the different involved stakeholders
in product design processes, we propose two modeling perspectives to provide
easy understandable process descriptions on the one hand and detailed technical
specifications on the other hand. As design processes are artifact-centric we
suggest object life-cycles for the technical specification of artifacts, while the
high-level description is defined in a process modeling notation. Furthermore, we
outline how both perspectives can be interrelated to apply consistency verification.
While we rely on existing formalisms for the description of object life-cycles,
we elaborate on object life-cycle composition and inheritance in detail. Finally,
our approach comprises the generation of an executable workflow model with a
structure that addresses the special needs of product design processes at runtime.
Hence, our methodology covers all steps from the initial design of the overall
processing to the specification of the supporting workflow. As an evaluation, we
present an implementation of our approach.

The remainder of this paper is structured as follows. Section 2 outlines the
characteristics of product design processes and defines requirements for process
automation. We describe the levels of our methodology in Section 3 and elaborate
on relations between models in Section 4. Our implementation is presented in
Section 5. Finally, we review related work in Section 6 and conclude in Section 7.

2 Processes for Innovative Product-Design

Innovation is one of the key values for the success of almost every enterprise.
Major potential for innovation lies in the process of designing new products. To
get a maximum amount of promising product proposals, as many design processes
as possible are performed. Thus, product design is a costly process that must
be supported accordingly by information systems. Dealing with these processes
involves some major challenges.

Flexible Artifact-Driven Automation of Product Design Processes 3

Artifact-centric process. A design process is characterized by intensive
interdisciplinary collaboration, which requires artifact-centric views on running
process instances. Various experts must be able to access the whole data available
for certain proposals to be able to make decisions.

Many objects. To design a product, many ideas have to be evaluated and
compared. Rather bad ones are rejected and resources are concentrated on
promising ones. Furthermore, a product may be a composition of many different
parts that are developed by different experts, but still influence each other.

State-driven enactment. Product design is a very creative process and
must not be restricted by the underlying information system. Only the current
state of a proposal determines the next activities, as it is very likely that certain
activities have to be performed multiple times until their outcome is a suitable
result. Besides, domain experts must be able to directly change properties of
proposals, which might trigger state changes that cannot be anticipated.

Flexibility. Even if a proposal was accepted, it is still in progress. Certain
tasks have to be performed again to incorporate new ideas and optimize the
overall result. Therefore, redoing and skipping of tasks must be under the control
of domain experts.

Impact of process environment. Product design processes may have long
durations and take place in a constantly changing business environment. That
makes it important to adapt processes fast. Additionally, changes might influence
the goals of design processes and, therefore, should have direct impact on the
execution of running process instances.

As the design process is driven by states of proposals, the actual process
execution should be specified by object descriptions. Nevertheless, process models
are helpful for the communication between stakeholders and for the specification
of how business goals should be achieved, e.g. which design methods should be
applied. Thus, a methodology for the automation of design processes should
involve process specifications and detailed object descriptions. To maintain these
models, which cover different perspectives and abstraction levels, methods for
consistency verification must be provided. Design processes may become very
complex as they comprise many different artifacts. A common approach to deal
with such complexity is to create various models describing different artifacts and
their behavior in different contexts. Consequently, there is the need for model
composition to be able to derive one complete process specification. Finally,
process execution must be state-based and flexible. Unforeseen external events
must have direct impact on running process instances.

3 Methodology Levels for Artifact-Driven Process
Automation

This section presents our methodology for the automation of product design
processes. The three different levels are illustrated in Fig. 1. At the highest level,
business experts create high-level models (HLMs) to define how business goals of
the company have be achieved w.r.t. the design of new products. At the second

4 Ole Eckermann, Matthias Weidlich

Transition Block

1. High-Level
 Models

2. Object Life-Cycles

3. Workflow Model

Fig. 1. Methodology for the automation of product design processes

level, domain and IT experts model OLCs for all business entities involved in the
process. In addition, they create relations between HLMs and OLCs and among
OLCs, that describe similar behavior, specialization of behavior and dependencies
between objects. Based on such relations we provide consistency verification for
appropriate handling of frequently changing processes. The third level describes
an executable workflow model that can be automatically derived from an OLC.
The workflow model has a structure that enables purely state-based process
execution and rich flexibility at runtime.

3.1 High-Level Models

Notations for business process modeling such as BPMN, EPCs, or UML activity
diagrams have become state of the art for business process discovery and de-
sign [12,13]. They provide rich tools for the definition of an ordering of activities
to achieve business goals on the one hand and role models to define responsibili-
ties for execution on the other hand. Even though product design processes are
data-driven, process models are very helpful. May it be discovery of processes,
process documentation, specification of responsibilities or adaptation to and
verification of compliance rules, it turned out that process models are the most
suitable language for the communication between all involved stakeholders [2].
Therefore, we propose to start modeling product design processes with a common
process description language to get an overview of the general procedure. For
illustration purposes, we use a BPMN subset containing activities, control nodes
and edges to define such high-level models (HLMs). The restriction to a subset
is necessary to be able to reason on the relation between HLMs and OLCs. For

Flexible Artifact-Driven Automation of Product Design Processes 5

this subset, execution semantics are defined unambiguously by a translation into
Petri nets models, cf., [14].

3.2 Object Life-Cycles

OLCs describe all states and state transitions of an object during its life time.
States correspond to certain property sets but abstract from concrete data values,
while state transitions represent business activities that have impact on the
described object. State chart based notions like UML state machines and notions
based on Petri nets are the most popular notions to model OLCs. The main
difference between both notions is, that in a state machine an object state is
represented by a node and, following on existing work [15,16], in a Petri net an
object state is given by the marking of the net. In design processes, a product
likely consists of various objects, which are developed in parallel. This has major
impact on the respective OLCs, as it is necessary to define dependencies between
those objects for a correct and complete system specification. Therefore, we us
Petri net to define OLCs.

We interpret transitions as business activities and markings as states of an
object handled by these activities. Accordingly, the Petri net must be safe as
there is no reasonable interpretation in terms of an object state for a place of
the Petri net that is marked with more than one token. Furthermore, we adopt
the definition of OLCs introduced in [16]. An OLC has exactly one initial place
corresponding to object creation and exactly one final place corresponding to
object destruction. Each transition and each place is located on a path between
these dedicated places.

OLCs describe the behavior of single object types. We assume that decisions
at places, where alternative continuation is possible, are made based on the whole
object state. This includes decisions made earlier in concurrent paths. We assume
that potential deadlocks are avoided by the use of this information. Therefore,
we consider OLCs to be correct, if they are relaxed sound [17]. That is, every
transition has to be part of some firing sequence from the marking containing
the initial place only to the marking containing the final place only.

3.3 Workflow Model

The third level of the methodology is a workflow model that enables rich flexibility
during runtime and eases adaptation. The main idea behind the workflow model
is to separate activities from the restrictiveness of control-flow and to determine
execution orders purely state-based. That is, process execution is in general
determined by the given OLCs and the defined state transitions, but the workflow
model allows for deviations in terms of externally triggered state changes. Thus,
the OLCs keep maintainable as they do not have to contain all deviations possible
at runtime and business users are enabled to influence the actual process execution
by manipulating the processed business objects and their states. Furthermore,
unforeseen events in the business environment can be reflected by state changes

6 Ole Eckermann, Matthias Weidlich

and have direct impact on the process execution. The workflow model can be
derived in an automatic transformation of an (composite) OLC.

Transition Block

Fig. 2. Overview of the workflow model

We define the workflow model using the Coloured Petri nets formalism as it
is illustrated in Fig. 2. The Transition Block contains all implementations of the
activities performed on an object, i.e., transitions of the OLC. These transitions
can be executed completely independent from each other. Tokens running through
the net carry a variable that represents a current substate of the process, e.g. a
process starts with one token in the place init carrying the initial state. According
to the substate of a token, the transition OR enables transitions in the Transition
Block. Each outgoing arc of OR has an expression, that specifies the substates
where the respective transition becomes enabled. If multiple arc expressions are
true, all respective transitions are enabled and executed concurrently. Basically,
substates correspond to places in the OLC. A place in an OLC is either marked
with zero or one token. Thus, a token in the workflow model carrying a value x
indicates that in the current marking of the OLC there would be a token in place
x. A major intention of the workflow model is to separate control-flow restrictions
from the actual execution of transitions. Therefore, we have to mind concurrency
and exclusive decisions in the transformation from an OLC to a workflow model.

Concurrency The concurrent execution of transitions in the workflow model is
realized by enabling these transitions at the same substate carried by a token. The
synchronization of tokens is also realized independent from the actual execution
of transitions in order to keep the model flexible. Synchronization is realized by
the Token Matcher. It is a subnet, that is entered by all tokens carrying a substate
that requires synchronization. Tokens are matched pairwise. Synchronization of
three or more tokens is realized in multiple steps. To be able to keep track of
such complex synchronizations, additional substates for tokens are introduced
during the transformation.

Flexible Artifact-Driven Automation of Product Design Processes 7

Exclusive decisions Exclusive decisions need special handling as the structure
of the workflow does not allow for such decisions. Transitions, that are enabled
at same substate are executed in parallel. Therefore, exclusive decisions become
explicit transitions during the transformation. They occur in the Transition
Block and produce a token with a substate that indicates which of the exclusive
transitions has to be executed. Accordingly, each of the exclusive transitions has
a unique substate as its precondition (i.e. arc expression).

External Events One important requirement for the execution of design pro-
cesses is the ability to handle unforeseen events. We propose the strict separation
of control-flow restrictions and implemented transitions as the solution. An ex-
ternal event causes an arbitrary change of data of an object involved in the
process. To be able to continue the process execution, the object must be in
a consistent state after the event happened. Therefore, the new object state
must occur in the respective OLC and can be translated into valid substates for
tokens. Consequently, an external event can be reflected by continuing process
execution with a set of tokens carrying the substates that represent the new
object state. Note that process continuation after an external event is not equal to
a complete rollback. Likely, such an event changes certain properties of an object,
but it will not have impact on all data that was created during former process
execution. Some transitions might be skipped when continuing process execution,
as the data they would produce is already present and still valid. Additionally,
an external event during the execution of two concurrent branches might trigger
redoing of an activity preceding the parallel split. In this case, either the split
and all succeeding activities are performed again or the execution of one branch
continues and activities of the other one are executed again, because only data
relevant for this branch has changed. To ensure the correct number of tokens in
the net at any time, the latter option is traced back to the first one by skipping
all activities that have been executed before. We propose that such skipping or
redoing of transitions is under the control of domain experts, as an execution
engine is in general not able to decide whether existing values are still valid.

4 Relations between Models

The business environment of product design processes is constantly changing.
Hence, the development of sufficient support with information systems is an
iterative process where changes are very likely. Changes induce the possibility of
inconsistencies. Therefore, we propose to relate similar parts among OLCs and
and between OLCs and HLMs and present a notion for consistency verification
based on these relations. Besides, we investigate OLC composition in this section,
which is necessary to express dependencies between different objects.

4.1 Inheritance of Object Life-Cycles

Products are often related to others, they belong to product categories. Mem-
bers of the same category differ from each other in certain specializations. A

8 Ole Eckermann, Matthias Weidlich

methodology for product design processes must reflect such specialization, to
express that similar goals are achieved in similar manner. In order to allow for
effective handling, specialization dependencies should be reflected when modeling
OLCs. Thus, the life-cycle may be specified for a category of products first,
while it is later refined for specific product subtypes. We address this demand by
introducing a novel notion of inheritance for OLCs. Fig. 3 depicts a parent and a
child model, which we will use for illustration purposes. We assume a refinement
relation between transitions as indicated by dotted lines, i.e. the transition set
{A1′, A2′} in the child model refines the transition set {A} in the parent model.
A pair of related transition sets is called correspondence.

(a)

(b)

A B C

A1'

B'

C'

A2'

D

D'

C1 C2 C3 C4

Fig. 3. Specialization of an Object Life-Cycle

Evidently, we do not require such refinements of OLCs to be hierarchical. This
is motivated by the observation that most sequential orderings of transitions are
due to some data dependencies. That is, the preceding transition will provide some
data that the succeeding transition requests. During specializing of OLCs, the
single transitions might be refined into several transitions representing smaller
units of functionality. Now, it is very likely that in the process of refining
transitions one will discover potential for optimization in terms of parallelization
as the data dependencies hold solely between some of the refined transitions.
Fig. 3 illustrates such a scenario. The transition B′ depends on the data provided
by A1′ but is independent from A2′. Therefore, it is not necessary to wait until
A2′ is finished to start B′.

Against this background, existing techniques for the verification of consistency
of an inheritance relation between two behavioral models cannot be applied. Those
either require refinements to be hierarchical in terms of single-entry-single-exit
subgraphs [18] or require that the observable behavior does not change [19,16].
Consequently, the described scenario would be considered to be inconsistent. In
order to cope with scenarios as introduced above, our notion of inheritance allows
for sequentialization and parallelization. The core idea of the consistency notion
is to check whether each ordering of transitions in the parent model, with respect
to their correspondences, is reflected by some transitions in the child model. That
is, if there is a transition t1 in the parent model belonging to a correspondence
C1 that is always preceding a transition t2 belonging to a correspondence C2,
there must be a transition t3 ∈ C1 that always precedes a transition t4 ∈ C2 in
the child model.

Flexible Artifact-Driven Automation of Product Design Processes 9

Our inheritance notion is formally grounded on trace semantics. For the
model for OLCs introduced above, a complete trace is a firing sequence of
Petri net transitions leading from the initial marking to the final marking. In
Fig. 3, for instance, the child model induces the traces A1′, B′, A2′, C ′, D′ and
A1′, A2′, B′, C ′, D′. To decide consistency regarding to an inheritance relation
between two models, consistency between all pairs of correspondences is checked.
Consistency of a correspondency pair is decided by comparing all traces of
both models. As a correspondence is possibly complex, and therefore, transition
sets may have different cardinalities, we partition traces into sub-traces before
comparing them. A partitioning induced by a pair of correspondences is based
on a classification of transitions as either being interleaving, being part of one of
the transition sets without being interleaving, or being not part of any transition
set. A transition belonging to either of the transition sets is interleaving if there
is another transition belonging to the other transition set and there is at least
one reachable marking where these two transitions are enabled concurrently.
For our aforementioned example, transitions B′ and A2′ in the lower model are
interleaving transitions, when comparing the correspondences C1 and C2.

C1 ι(C1,C2)

t

C1 C3
C1 C4

C1 C2
C1 C3
C1 C4Partitioning

of traces
of model (a)

C1, C2
C1, C3

C1, C4

C1, C4

C1, C3
C1, C2

Partitioning
of traces

of model (b)

C2 C3C2, C3

C2 C4C2, C4

C3 C4C2, C3

C2 C3C2, C3

C2 C4C2, C4

C3 C4C2, C3

Fig. 4. Partitioning of traces of the mod-
els in Figure 3

Fig. 4 illustrates the partitioning of
traces for all pairs of correspondences
defined in Fig. 3. A sub-trace is labeled
like a correspondence, if it contains
non-interleaving transitions belonging
to the transition set associated to the
respective correspondence. Interleav-
ing transitions are labeled by ι and
the label of the two respective corre-
spondences. Transitions that are not
part of any of the transition sets are
neglected. We conclude that both mod-
els show equal trace partitionings for
the pairs of correspondences (C1, C3)
and (C2, C3). They are sequentially
ordered without any interleaving tran-
sitions. For the pair (C1, C2), however, both models have a different trace parti-
tioning. While the parent model shows a sequential ordering, the child model
shows a sub-trace of non-interleaving transitions belonging to C1 followed by a
sub-trace of interleaving transitions belonging to C1 and C2.

Based on such a trace partitioning we decide whether two correspondences
are consistent. Therefore, the partitionings are transformed into a representation
that reflects implied data dependencies only. That is, all interleaving parts are
either neglected or replaced by an non-interleaving part belonging to one of the
transition sets. An interleaving part is

◦ hidden if it succeeds a non-interleaving part of one transition set and precedes
a non-interleaving part of the other transition set;

10 Ole Eckermann, Matthias Weidlich

◦ replaced by a non-interleaving part C2, if it is surrounded by non-interleaving
parts of C1 and vice versa;

◦ replaced with a non-interleaving part different to the one that precedes the
interleaving part, if it is the last part of the trace;

◦ replaced with a non-interleaving part different to the one it precedes, if it is
the first part of the trace.

Traces are considered to be compatible, if they have equal trace partitionings
after this transformation. A pair of correspondences is consistent, if for each trace
in the parent model, there is a compatible trace in the child model. Two OLCs are
in a consistent inheritance relation if all pairs of correspondences are consistent.
To ensure, that an object implements the complete behavior of its parent, all
transitions of the respective parent model must be part of a correspondence with
the child model.

4.2 Composition of Object Life-Cycles

Inheritance of OLCs copes with specialization relations between products. Prod-
ucts may also be related by composition relations. Many products are compositions
of several parts with special functionality, which can be developed independently
to a certain degree. Such compositions impact also on the respective OLCs and
have to be considered when deriving one as a complete system specification for
process automation. Furthermore, we propose to specify the behavior of a product
in various OLCs that describe different aspects of the products behavior to reduce
complexity and to ease maintainability. We distinguish three composition types.

Synchronous Some activities in a process have impact on multiple objects. For
example, the design of intersection points between two independently developed
components is one task that affects both components. Execution of such activities
triggers state changes in both respective OLCs, and these activities likely have
preconditions regarding to all involved objects. Thus, OLCs of these components
must be composed not only to derive a complete system specification but also to
be able to verify consistent behavior. The composition is realized by identifying
and merging transitions of all involved OLCs that represent equal activities.

Asynchronous In contrast to activities that have impact on multiple objects,
other activities require various objects to be in certain states without changing
them. That is, certain properties of one component must already be defined
because they have impact on the design of other components. In terms of OLCs
this means a transition of one model is waiting for the completion of a transition
of another model. Consequently, models are composed by connecting these
transitions with an additional place.

Alternative Continuation The OLCs of single objects may become complex,
for instance, if objects occur in various contexts where they show different

Flexible Artifact-Driven Automation of Product Design Processes 11

behavior. A common approach to reduce complexity is to define several models
that describe different aspects of the behavior of the same object. These models
have certain states in common where a context change might happen. Hence,
composition is realized by merging all similar places of models describing the
same object. Composition by merging places makes sense for models describing
the same object only. If one would compose OLCs describing different objects
using a place, it would express that two different objects could reach the same
state. This is a contradiction to the semantics of a state, as it says that two
objects in equal states cannot be distinguished.

Consistent Compositions Composing OLCs as described before leads to a
model that contradicts the definition of an object-life cycle, as it may contain
multiple initial and final places. This must be resolved by creating a new initial
and a new final place and connecting them with the initial and final places of
the OLCs describing the singe components. After this transformation, composite
OLCs are similar to standalone ones. Thus, the composition must be bounded
and safe, as a marking still represents a state and there is no valid interpretation
for a place with multiple tokens. Additionally, composite OLCs must always
describe the aggregated behavior of all original OLCs and can optionally describe
additional behavior in terms of interaction between objects. Consequently, the
composite OLC must not contain dead transition, each transition must be part
of a trace from the initial to the final marking. Otherwise, the described behavior
has changed and the composite OLC is considered to be inconsistent. We have
argued before, that syntactically possible deadlocks in OLCs are avoided, because
the whole state of an object is considered in exclusive decisions. This argument
also holds for OLC compositions. Thus, a consistent composition is relaxed sound.

In sum, OLC composition enables the structured definition of an artifact-
centric system specification. A system can easily be extended by adding OLCs
describing new aspects and adapted by editing or removing existing OLCs.
Consistency verification of both, single models and composite ones, can be applied
by checking for relaxed soundness. OLC compositions ease the maintainability
of large, constantly changing sets of models and provide methods to derive one
system specifications for process execution.

4.3 Relation between High-Level Models and Object Life-Cycles

HLMs and OLCs have very different modeling purposes and, therefore, are
different views on the same process. Furthermore, they are at different abstraction
levels: while HLMs consist of the most important activities only, object-life
cycles give detailed information about the single states and state changes of all
involved business objects. Obviously, these models will have many differences,
but there are also some similarities, since both views describe behavior of the
same process. The similar parts of the models should not contradict in the
described behavior. We propose to specify similar parts between HLMs and
OLCs using correspondences. Hence, activities in HLMs correspond to transitions

12 Ole Eckermann, Matthias Weidlich

in OLCs. Again, correspondences might be complex, meaning they are defined
between sets of activities and sets of transitions. A process likely involves several
business objects. That raises the question how to correlate multiple OLCs with
one HLM and whether it is allowed that a set of activities in a HLM corresponds
to various sets of transitions in different OLCs. This is certainly true, but using
the methods described in Section 4.2 these models can be composed to one OLC.
Transition sets corresponding to the same activity are indicating synchronization
points. Correspondences between the HLM and the composite OLC must be
non-overlapping, as the semantics of overlapping correspondences are unclear.

Section 4.1 introduced a consistency notion for OLC inheritance based on
complex correspondences. This notion is motivated by data dependencies between
activities and can be applied for relating HLMs and OLCs, even though modeling
purpose and view on the process are different. In either model type control-
flow restrictions for activities are specified. As correspondences identify similar
activities, the restrictions defined for them must not contradict. To apply the
consistency notion, HLMs have to be translated to Petri net. As previously
mentioned, such a mapping for our BPMN subset is given in [14].

5 Implementation

We implemented our approach prototypically and integrated it into the Oryx
Project1. The Oryx Mashup-Framework contains a Gadget that allows two define
correspondences between models. Based on these correspondences, consistency
regarding OLC inheritance can be verified. Fig. 5 depicts a parent (left) and
a child model (right) and four defined correspondences. The correspondence
pair c3 = ({C}, {C}) and c4 = ({D}, {D}) is inconsistent. Therefore, all respec-
tive transitions have been highlighted. Currently, the implemented algorithm
is restricted to sound free-choice Petri net based models, i.e. HLMs that can
be mapped to sound free-choice Petri nets and sound free-choice OLCs. This
restriction is because of the strong relation between syntax and semantics of this
Petri net class, that allows for more efficient calculation of consistency. Besides
the consistency notion, we implemented the transformation from a (composite)
OLC into a workflow model. To integrate the transformation into Oryx, a client
and a server plugin have been realized. The client plugin offers the functionality to
trigger the transformation for the OLC currently opened in the Editor. The server
plugin realizes the transformation and responds with the generated workflow
model in a JSON representation. The workflow model can be displayed in Oryx
by creating a new Coloured Petri net and importing the JSON. Finally, the model
can be exported to CPN Tools2 for process simulation.

1 http://www.oryx-project.org
2 http://cpntools.org/

http://www.oryx-project.org
http://cpntools.org/

Flexible Artifact-Driven Automation of Product Design Processes 13

Fig. 5. Transitions regarding to inconsistent correspondences are highlighted

6 Related Work

In recent years, artifact-centric design of business processes gained increasing
attention, see [10,11]. Following this methodology, the key driver of modeling
and execution are business artifacts that are specified by both, an informational
model and a life-cycle. Activities operate on artifacts and are responsible for
state changes. In contrast to such an integrated view, we propose a methodology
containing both process models and OLCs that are interrelated. Moreover, our
approach goes beyond the existing work by defining OLC hierarchies and com-
positions. To this end, we introduced a notion of inheritance for OLCs that is
related to work on behavior inheritance [19,16]. The latter builds on the notion
of branching bisimilarity and adapts it to the setting of partially corresponding
models. For two behavioral models, nodes that are without counterpart are
either be blocked or hidden when assessing behavioral equivalence. The notion of
inheritance introduced in this paper is much weaker than the notions of behavior
inheritance. We argue that specialization of objects may be non-hierarchical, so
that potential sequentialization or parallelization of activities calls for a more
relaxed notion of inheritance.

Regarding the composition of OLCs, our notion for synchronous composition
is related to work on the composition of UML state machines [20]. Asynchronous
composition has been investigated in the work on proclets [21]. Finally, the
composition of alternative continuations is related to scenario-based modeling
using oclets [22]. Oclets specify intended behavior, while anti-oclets are used
to express forbidden behavior under certain preconditions. A complete process
description is derived by composing oclets at runtime. A different approach
aiming for more flexibility during process execution is the concept of pockets
of flexibility [23]. These approaches mainly concentrate on reducing complexity

14 Ole Eckermann, Matthias Weidlich

of modeling flexible (parts of) processes. We enable flexibility by allowing for
not-specified execution sequences that are caused by unforeseen external events.

Finally, techniques for adaptive process management are also related to our
work. Adaptive process management has been studied in the ADEPT project [7] –
a process management system which is able to handle changes during runtime. The
creation of consistent process structures by OLC composition is investigated in [24].
They further discuss changes in the process structure in terms of adding/deleting
OLCs or dependencies between them. While these approaches aim for easy and
consistent adaption during runtime, we rather focus on flexibility. Therefore, we
consider them to be complementary.

7 Conclusion

In this paper, we presented an artifact-driven methodology to automate innovative
product design processes. We propose two modeling perspectives: high-level
models and object life-cycles. Our contribution here is a novel consistency notion
that is insensitive to control-flow structures and relies on data dependencies.
The notion can be applied to ensure consistency between both perspectives
and among object life-cycles with non-hierarchical refinements. Furthermore, we
presented methods for object life-cycle composition to derive a complete system
specification. These methods ease adaption, extension and maintainability of
complex and constantly changing processes. Finally, we introduced a workflow
model for process execution. The novel structure of this model enables rich
flexibility by determining control-flow purely state-based. The workflow model is
derived in an automatic transformation from an object life-cycle into a Coloured
Petri net.

In future research, we aim to extend our approach to instance correlation.
In product design it is common, that starting from one proposal a large set of
proposals with slightly different values for certain properties is created during
the design process. As these proposals do have a lot in common, they are not
handled isolated and run as a set through the process. Certain activities might
handle them equal to a single instance, i.e. the manipulated data is equal for all
instances, others will handle them as a list, for example approval tasks where
certain proposals are rejected and others are accepted.

References

1. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-aware information
systems: bridging people and software through process technology. John Wiley &
Sons, Inc., New York, NY, USA (2005)

2. Weske, M.: Business Process Management – Concepts, Languages, Architectures.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

3. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall (1999)

4. Alexandre Alves et al.: Web Services Business Process Execution Language Version
2.0. Technical report, OASIS (January 2007)

Flexible Artifact-Driven Automation of Product Design Processes 15

5. Hollingsworth, D.: The Workflow Reference Model. Technical report, WFMC
(January 1995)

6. Lenz, R., Blaser, R., Beyer, M., Heger, O., Biber, C., Bäumlein, M., Schnabel, M.:
It support for clinical pathways - lessons learned. In: MIE. Volume 124 of Studies
in Health Technology and Informatics., IOS Press (2006) 645–650

7. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development
for robust and flexible process support. Computer Science - R&D 23(2) (2009)
81–97

8. Reijers, H.A., Rigter, J.H.M., van der Aalst, W.M.P.: The case handling case. Int.
J. Cooperative Inf. Syst. 12(3) (2003) 365–391

9. van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: A new paradigm
for business process support. Data and Knowledge Engineering 53 (2005) 2005

10. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes. In: Handbook of Research on Business Process Modeling, chapter 23.
(2009) 503–531

11. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3) (2009) 3–9

12. Yourdon, E.: Modern structured analysis. Yourdon Press Upper Saddle River, NJ,
USA (1989)

13. Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-IT alignment.
Communications of the AIS 1(3) (1999)

14. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business
processes - a survey. T. Petri Nets and Other Models of Concurrency 2 (2009)
46–63

15. Preuner, G., Schrefl, M.: Observation consistent integration of views of object
life-cycles. In: BNCOD 16: Proceedings of the 16th British National Conferenc on
Databases, London, UK, Springer-Verlag (1998) 32–48

16. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. Journal of Logic and
Algebraic Programming 47(2) (2001) 47 – 145

17. Dehnert, J., van der Aalst, W.M.P.: Bridging the gap between business models and
workflow specifications. Int. J. Cooperative Inf. Syst. 13(3) (2004) 289–332

18. Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving
refinements of petri nets. In Rozenberg, G., ed.: Applications and Theory of Petri
Nets. Volume 483 of Lecture Notes in Computer Science., Springer (1989) 1–46

19. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11(1) (2002) 92–148

20. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and
object life cycles. In: Models in Software Engineering. Volume 4364 of Lecture
Notes in Computer Science., Springer Berlin / Heidelberg (2007) 80–90

21. van der Aalst, W.M., Barthelmess, P., Ellis, C., Wainer, J.: Workflow modeling
using proclets. In: Cooperative Information Systems. Volume 1901 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg (2000) 198–209

22. Fahland, D.: Oclets - scenario-based modeling with petri nets. In: Petri Nets. (2009)
223–242

23. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: Conceptual Modeling – ER 2001. Volume 2224 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2001) 513–526

24. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In: Advanced Information
Systems Engineering. Volume 5074 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2008) 48–63

	Flexible Artifact-Driven Automationof Product Design Processes
	Introduction
	Processes for Innovative Product-Design
	Methodology Levels for Artifact-Driven Process Automation
	High-Level Models
	Object Life-Cycles
	Workflow Model
	Concurrency
	Exclusive decisions
	External Events

	Relations between Models
	Inheritance of Object Life-Cycles
	Composition of Object Life-Cycles
	Synchronous
	Asynchronous
	Alternative Continuation
	Consistent Compositions

	Relation between High-Level Models and Object Life-Cycles

	Implementation
	Related Work
	Conclusion

