
Towards Vertical Alignment of Process Models -
A Collection of Mismatches

Matthias Weidlich1, Gero Decker1, Mathias Weske1, and Alistair Barros2

1 Hasso Plattner Institute, Potsdam, Germany
{matthias.weidlich,gero.decker,mathias.weske}@hpi.uni-potsdam.de

2 SAP Research, CEC Brisbane, Australia
alistair.barros@sap.com

Abstract. Process models are created to answer a specific purpose.
Multiple models created in the context of the same scenario, but for dif-
ferent purposes, differ with respect to their level of abstraction. However,
it is a common observation that differences between these models related
not only to the applied abstraction level. Aspects that are of no relevance
regarding the purpose of the model are neglected, whereas other aspects
that are relevant to answer the purpose are added. These mismatches
violate existing consistency notions between models of different abstrac-
tion levels, as these notions focus on strict refinement relations between
models. We argue that these models are not wrong. On the contrary, the
mismatches are a natural result of the different focus of these models. In
this paper, we present a categorisation and informal description of these
mismatches.

1 Introduction

The wide variety of drivers for business process management leads to a set of
different process models describing a certain scenario. Depending on the con-
crete purpose of the model, there is a huge difference in the appropriate level of
abstraction of processes for all involved stakeholders. On a very high level solely
the major activities of an enterprise are modelled. Here, an intuitive overview
of the major processing steps and their performance indicators (KPIs) is in the
centre of interest. These high level models are often independent of any concrete
organisational or technical environment. Therefore, they might also be applied
in order to define the scope of a process-related project.

At the other end of the line, processes are specified in a fine-grained manner.
They might aim at capturing technical requirements. Thus, aspects such as the
treatment of exceptional cases or data formats are specified. Furthermore, low-
level models often also focus on the relation between the process and its execution
environment. Organisational units that are mandated to execute the tasks and
information systems that support their execution are assigned to certain parts of
the process. Strengthened process awareness and effective change management
in an organisation are the driving factors for the application of these types of
process models.



2

Evidently, common scenarios require multiple levels of abstraction, as real-
world processes are too complex to be captured by a single high-level and a
single low-level model. Driven by a specific objective, an appropriate process
model is created, which incorporates a reasonable level of detail, focus on certain
properties, and neglects unrelated aspects. Albeit complicated by the usage of
different modelling approaches, vertical alignment of process models is a generic
problem, independent of any language or technique. As stated before, a process
model, which is appropriate in a particular context, highlights certain aspects,
whereas others are neglected or even ignored. Consequently, the assumption
that these process models can always be derived through hierarchical refinement
appears to be unrealistic. A variety of mismatches between these models is,
indeed, a more realistic scenario. From our point of view, these mismatches are
in the nature of process models emphasising dedicated aspects. Thus, avoidance
of mismatches might not only be impossible in certain scenarios, it might also
be undesired. That is to say that a resolution of these mismatches might impact
the adequacy of a process model in a negative manner.

This paper presents an informal description of common mismatches as a first
step to overcome the discussed disconnect of process models. The remainder of
this paper is structured as follows. Section 2 introduces a classification framework
for mismatches between process models of different levels of abstraction. The
broad field of related work is discussed in section 3. Finally, we conclude in
section 4.

2 Mismatches between process models of different levels
of abstraction

After the previous section introduced various mismatches by means of an ex-
emplary process, this section gives a general overview of existing mismatches
between process models of different levels of abstraction. We group the mis-
matches according to the perspective that is affected. Thus, mismatches in the
context of the process, activity, control flow, data, and resource perspective are
discussed separately.

2.1 Process Perspective

The most coarse-grained mismatches cannot be traced back to the basic build-
ing blocks of a process model, namely activities, data elements, and resources,
but related to the notion of processes in general. We identified three major mis-
matches for the process perspective, which are listed in table 2.1.

The first mismatches (P.1) describes the fact a process might be split up into
several processes in another model. Thus, the process coverage between two sets
of processes of different process models is the same, whereas the process slicing
is different. A set of processes in one model is represented by a set of processes
of the other model, which is also illustrated in figure 1. Here, the process in the
upper part corresponds to the set of processes containing the two processes on



3

Table 1. Mismatches in the process perspective

ID Mismatch

P
ro

ce
ss

es

P.1 Process Fragmentation
There is no relationship between single processes, but sets of processes of
two models.

P.2 Process Case Relation
A case for process in one model does not represent a case for the correspond-
ing process in the other model.

P.3 Fragmented Process Case Relation
Processes are fragmented differently. In addition, the relation between a pro-
cess and a case is different for at least one of the process fragments.

Get Contact

Send 
Information 

Material to All 
ContactsEvery Week

(P.3)

Get Contact
Send 

Information 
Material

Get Contact
Send 

Information 
Material

(P.1)

Get Contacts

Send 
Information 

Material to All 
Contacts

Get Contact
Send 

Information 
Material

(P.2)

Get Contact
Send 

Information 
Material

Fig. 1. Examples for the mismatches related to the process perspective



4

the lower part. Please note that as a consequence of this mismatch, all other
mismatches defined on the process level might also occur on the level of sets of
processes.

It is worth mentioning that mismatch P.1 requires full correspondence, while
we do not introduce a mismatch for partial correspondence processes. In case
two sets of processes correspond to each other solely to a partial extent, it is
sufficient to capture this mismatch on the level of activities, data elements, or
resources, respectively. However, we capture a special case of partial equivalence.
That is, a process in one model corresponds to a process in another model in the
sense that the difference in the process coverage can completely be traced back
to the number of executions (P.2). In other words, one instance of a process
corresponds to multiple instances of a dedicated process in the other model.
Figure 1 shows an example for this case. The upper process handles a set of
contacts, while the lower process handles only a single contact. Therefore, the
notion of a case is different for both processes.

The third mismatch (P.3) can be derived from the previous ones. Process
are fragmented differently in both models, while there is also a difference in the
notion of a case for at least one of the process fragments. Again, an example
can be found in figure 1. The upper process describes the handling of a single
contact. The same holds true for the lower left process. In contrast, the lower
right process corresponds to multiple instances of the upper process as multiple
contacts are treated in the same instance.

Against the background of model alignment, we argue that it is also reason-
able to neglect any non-correspondence between processes. Therefore, we avoid
to introduce a dedicated mismatch that captures sets of processes of one model
that have not even a partial counterpart in the other model.

2.2 Activity Perspective

Activities are the elemental processing steps of every business process. Not sur-
prisingly, various mismatches between process models of different abstraction
levels are related to these elemental processing steps. We list five mismatches
along with a short explanation in table 2.2.

The first mismatch (A.1) resembles the one defined also on the process level.
It describes the case that the activity coverage between two sets of activities
of different process models is the same, whereas the activity slicing is different.
Thus, a set of activities in one model is represented by a set of activities of
the other model, whereas the contained activities or subsets of activities are
without a direct counterpart. An example is shown in figure 2. Assuming that
the sequence of the upper two activities describes exactly the same amount of
work or computation as the sequence of the lower three activities, this example
shows different activity fragmentation. As in case of the process mismatch, all
other mismatches defined on the activity level might also occur on the level of
activity sets.

In contrast to the first mismatch, there is a difference in the activity coverage
in mismatch A.2. Thus, the constraint of the first mismatch, i.e. the amount of



5

Table 2. Mismatches in the activity perspective

ID Mismatch

A
ct

iv
it

ie
s

A.1 Activity Fragmentation
There is no relationship between single activities, but sets of activities of
two models.

A.2 Partial Activity Equivalence
An activity in one model is only partially covered by the corresponding ac-
tivity in the other model.

A.3 Non-Covered Activity
An activity in one model is not covered by any activity in the other model.

A.4 Activity Iteration
An activity is executed (in a sequential order) more often in one model than
the corresponding activity in the other model.

A.5 Activity-Case Relation
A case for an activity in one model does not represent a case for the corre-
sponding activity in the other model.

Get in Contact 
with Customer

Provide 
Consulting

Set up 
Meeting with 

Customer

Create 
Customer 
Specific 
Proposal

Present 
Proposal

Check Formal 
Requirements 

& Archive 
Application

Archive 
Application

Contact 
Customer

Contact 
Customer

Create 
Customer 

Entry

Contact 
Customer

Contact 
Customer

Get Similar 
Contacts

Retrieve 
Similar 
Contact

(A.1) (A.2)

(A.5)(A.4)(A.3)

Fig. 2. Examples for the mismatches related to the activity perspective



6

work or computation described by two corresponding activities is the same, is
not fulfilled. An activity in one model (or a set of activities, respectively) is
represented only partially in the other model. The example in figure 2 shows
such a scenario.

The third mismatch (A.3) logically follows the first two ones. An activity in
one model is not represented in the other model.

The last two mismatches are related in the sense that both are specialisa-
tions of mismatch A.2. Both assume an activity in one model that is partially
represented by an activity in the other model. However, the difference in the
activity coverage can completely be traced back to the number of executions
in the scope of a process instance. Therefore, these mismatches are also closely
related to mismatches P.2 introduced above.

Mismatch A.4 describes the scenario, in which an activity in one model is
executed more often than the related activity in the other model. In particular,
one activity is represented partially by the other activity if the execution of one
activity instance is the basis of the comparison. However, one activity is com-
pletely represented by the other activity if the execution of all activity instances
is taken into account. Therefore, one activity represents the other activity in case
the process instance is the basis for the comparison. Further on, mismatch A.4
assumes these activity instances to be executed in a sequential order. An example
is illustrated in figure 2. Here, an immediate iteration of activity Contact Cus-
tomer is realised. Nonetheless, this is not required according to our definition of
the mismatch. Contact Customer might as well be repeated with other activities
happening in between. On the contrary, mismatch A.5 describes a non-matching
number of related activity instances that are executed concurrently. There is a
mismatch with respect to the definition of the case for two related activities.
For a single instance of an activity in one model, we create multiple concurrent
instances of the related activity in the other model. However, the single instance
of the first activity is completely represented by the set of concurrent instances
of the second activity.

It was already mentioned that mismatches A.4 and A.5 are closely related to
the mismatch P.2 defined between processes. In particular, the existence of mis-
match P.2 implies the existence of the mismatches A.4 and A.5 for all activities
contained in the respective process.

2.3 Control Flow Perspective

In table 2.3, the first control flow mismatch (C.1) describes different causal
dependencies between activities. It is based on the assumption that we already
identified corresponding activities (or sets of activities, respectively). However,
these corresponding activities are executed in a different order in two models.
They might be in sequential order in one model, whereas they are executed
concurrently in the other model. Another example would be an interchanged
order of two corresponding activities as it is illustrated in figure 3.

Mismatch C.1 has been defined in a very generic way and refers to a variety
of differences between process models. In the context of models of different ab-



7

Table 3. Mismatches in the control flow perspective

ID Mismatch
C

o
n
tr

o
l

F
lo

w

C.1 Different Causal Dependencies
Equivalent activities have different execution dependencies. Common exam-
ples are sequentialisation, parallelisation, and an interchanged order.

C.2 Rerouting
A sequential execution dependency between two activities in one model is
not preserved in the other model due to rerouting of control flow.

C.3 Alternative Merge
A sequential execution dependency between two activities in one model is not
preserved in the other model as control flow might merge from an alternative
preceding branch in the other model.

C.4 Decision Distribution
A decision point in one model is represented by multiple decision points in
the other model.

straction levels, several specialisations of this mismatch are of particular interest.
Mismatch C.2 refers to rerouting of the control flow. That is, in one model there
are two activities that have a sequential execution dependency in sense that one
of them is executed whenever the other is executed. In the second model, there
are corresponding activities for both activities. Nevertheless, the sequential ex-
ecution dependency is not preserved. Thus, the control flow might be rerouted
after execution of the first activity. An example can be found in figure 3. Further
on, C.3 represents the counterpart for C.2. Again, a sequential execution depen-
dency between corresponding activities is not preserved. The control flow might
merge from an alternative branch, so that the execution of the second activity
might happen without an execution of the first one.

Further on, mismatch C.4 describes scenarios, in which a decision point in
one model is represented by different decision points in the other model. Thus,
a single decision is fragmented into multiple decisions. It might also be the case
that not only one but multiple coarse-grained decisions are split up into multiple
fine-grained decisions. Instead of an one-to-many relationship, this would result
in an many-to-many relationship between the decision points. However, against
the background of processes on different abstraction levels, we consider these
cases to be of only theoretical interest. Therefore, we focus on the one-to-many
relationship as it is shown in the example in figure 3. It is worth mentioning that
mismatch C.4 does not necessarily involve a mismatch with respect to activity
coverage as it is shown in the example.

2.4 Data Perspective

The first mismatches with respect to the data perspective resemble some of
the mismatches defined on the activity layer. As shown in table 2.4 there are



8

Present 
Products

Develop & 
Present Proof 

of Concept

Develop 
Proof of 
Concept

Present 
Products & 

Proof of 
Concept

(C.1)

Provide 
Consulting

Define & 
Submit Quote

Provide 
Consulting

Define & 
Submit Quote

(C.2)

Request 
Quotes from 

Subcontractors

Subcontractors 
required? no

yes

Complete 
Quote Approval

Approval required?

yes

no

Complete 
Quote Approval

Sum > 100.000?
yes

no

Evaluate 
Strategic 

Value

Strategic 
Value?

high

low

(C.4)

Create 
Customer 

Entry

Update 
Customer 

Entry

Create 
Customer 

Entry

(C.3)

Select 
Customer 

Entry

Update 
Customer 

Entry

Fig. 3. Examples for the mismatches related to the control flow perspective

three different types of relations between data elements or sets of data elements,
respectively. Firstly, data elements can be fragment differently in two models
(D.1). Secondly, a data element of one model might only be partially covered by
the other model (D.2), whereas a counterpart might also be completely missing
(D.3).

Similar to the activity perspective, mismatches might also result from a dif-
fering notion of an instance of related data elements. Mismatch D.4 describes
the case that a data element in one model corresponds to multiple instances of
a data element in the other model. Therefore, it is a specialisation of mismatch
D.2 as there must always be a partial coverage between these two data elements.
The modelling of lists of certain entities instead of the entity itself is a common
example for mismatch D.4. It is illustrated in figure 4. Again, the mismatch on
the instance level is closely related to the process mismatch P.2, as the existence
of mismatch P.2 implies the existence of the mismatch D.4 for all data objects
contained in the respective process.

Based on a identified relations between data elements and activities, the last
mismatch D.5 describes a difference in the way data is accessed in two models.
In the course of abstracting or refining a process model, data access might be
restricted or expanded. Figure 4 illustrates a simple example for this mismatch.



9

Table 4. Mismatches in the data perspective

ID Mismatch

D
a
ta

H
a
n
d
li
n
g

D.1 Data Element Fragmentation
There is no relationship between single data elements, but sets of data ele-
ments of two models.

D.2 Partial Data Element Equivalence
An data element in one model is only partially covered by the corresponding
data element in the other model.

D.3 Non-Covered Data Elements
A data element in one model is not covered by any data element in the other
model.

D.4 Different Amount of Data Instances
A data element in one model represents multiple instances of a data element
in the other model.

D.5 Different Data Access
There is a difference in the data access between corresponding pairs of data
elements and activities of two models.

(D.1)

Customer
Address

Customer
ID

Customer
Details

Customer
Address

Customer
Address

Contact 
Customer

Contact 
Customer

(D.2)

Customer
Address

Customer
ID

Customer
Details & 

Order History

Customer
ID

(D.3)

(D.4)

List of 
Customer 

Details

Customer
Details

Contact 
Customer

Contact 
Customer

(D.5)

Customer
Details

Customer
Details

Fig. 4. Examples for the mismatches related to the data perspective



10

2.5 Resource Perspective

As introduced for the other perspectives, three mismatches related to relations
between resources of different process models. As listed in table 2.5 they might
be fragment in a different way (R.1) or they only be partially related (R.2). In
addition, a resource in one model might not be represented in the other model
(R.3). Again, examples for these mismatches are illustrated in figure 5.

Table 5. Mismatches in the resource perspective

ID Mismatch

R
es

o
u
rc

es

R.1 Resources Fragmentation
There is no relationship between single resources, but sets of resources of
two models.

R.2 Partial Resources Equivalence
A resource in one model is only partially covered by the corresponding re-
source in the other model.

R.3 Non-Covered Resources
A resource in one model is not covered by any resource in the other model.

R.4 Contradicting Resource Assignments
An activity or data element is assigned to a resource in one model, but not
to the corresponding resource in the other model.

R.5 Additional Resource Assignments
An activity or data element is assigned to multiple resources in different
models and the resources are not related.

Beyond mismatches related to the relation of resources of different process
models, mismatch R.4 and R.5 describe differences in resource assignments. Ob-
viously these mismatches are based on identified relations between different mod-
els regarding their resources and activities or data elements. We distinguish non-
matching resource assignments that are contradicting (R.4) from those that are
compliant (R.5). In the first case an activity or data element is assigned to a re-
source in one model, but not to the corresponding resources in the other model.
In the second case, an activity or data element is also assigned to two different
resources. Nonetheless, these two resources are independent of each other. As
illustrated in figure 5, this mismatch often results from different perspectives
that are adopted by the process models. It is worth mentioning that mismatch
R.5 covers scenarios, in which the resource assignment is specified solely in one
of the investigated process models.



11

S
al

es

M
y 

C
om

pa
ny

P
re

-
S

al
es

S
al

es
 D

ep
.

M
y 

C
om

pa
ny

(R.1)

M
y 

C
om

pa
ny

S
pe

ci
fic

 C
R

M
 

P
ro

du
ct

 &
 

V
er

si
on

C
R

M

M
y 

C
om

pa
ny

(R.2)

M
y 

C
om

pa
ny

(R.3)

S
al

es

M
y 

C
om

pa
ny

D
ev

.
D

ev
el

op
m

en
t

(R.5)
C

R
M

M
y 

C
om

pa
ny

S
al

es

M
y 

C
om

pa
ny

P
re

-
S

al
es

(R.4)

Create 
Quote

S
al

es

M
y 

C
om

pa
ny

Create 
Quote

Create 
Quote

S
al

es

M
y 

C
om

pa
ny

P
re

-
S

al
es Create 

Quote

Fig. 5. Examples for the mismatches related to the resource perspective

3 Related Work

Our work relates to a variety of research fields from which we pick up certain
concepts, i.e. process integration, process change management, process similarity,
and process abstraction mechanisms.

In this paper we primarily raise the awareness for the fact that process mod-
els on different levels of abstraction focus on different aspects. For instance, a
model might focus on the business conducted, whereas a another more fine-
grained model specifies the available IT functionality. The gap between these
models has been described in various publications [1–4]. One of the paper’s au-
thors proposed a process support layer realising common mismatch patterns to
bridge this gap [5]. Although it seems questionable, whether the idea to wrap the
technical models in order to enact the business models is feasible in real world
scenarios, most of the pattern identified in [5] are subsumed by the mismatches
presented in this work. Addressing the gap between business models and tech-
nical models, Henkel et al. [3] introduced realisation types that are applied to
transform a business model into a technical model in order to overcome the
disconnect. Further on, the realisation types are grouped according the process
aspects, i.e. the functional, behavioural, informational, organisational, and trans-
actional perspective. Albeit more abstract, these realisation types influenced the
definition of our mismatches. Our work is also influenced by the business-driven
development (BDD) paradigm as introduced by Koehler et al. [4]. The BDD



12

methodology postulates the necessity to distinguish between a business-centred
analysis model and an it-centred design model and aims at seamless transition
from the first to the latter.

Building on top of the multi-viewpoint paradigm, the authors of [6] show
how enterprise and computational views can be related. However, their work is
based on a strict notion of composition that cannot be applied in our scenarios.
Broadening the focus to a generic multi-viewpoint approach, a framework in
order to handle inconsistencies was also presented already in 1994 [7]. In this
work, the authors show how to apply temporal logic in order to detect and
resolve inconsistencies in multi-viewpoint specifications.

Differences between process models are also in the centre of interest of pro-
cess integration. In that field it is assumed that process models originate from
different sources. Therefore, they are different yet similar. Recently, Dijkman
published a classification of mismatches between similar processes [8] and showed
how they can be detected [9]. These mismatch patterns are similar to the mis-
matches we presented in this paper. Several of our mismatches have a counter-
part in the framework presented in [8]. As mentionend before, Dijkman focus on
mismatches of very similar processes that differ only slightly. A process that is
enacted in different departments of the same organisation is a typical example for
such a scenario. Typically, these processes are on the same level of abstraction.
Therefore, these mismatch patterns are more fine-grained than our mismatches.
Common problems arising with processes on different abstraction levels (e.g. the
distribution of a decision point) are out of scope for the mismatch patterns, while
they are covered by our framework.

Research was also conducted on process integration in the field of statecharts
[10], composite business processes [11], and EPCs representing different views
[12]. However, these approaches assume a high similarity between the processes
and concentrate on the definition of a merge operation. A technique to merge an
existing process model with a related reference model based on model correspon-
dences has also been presented in the context of business-driven development
[13]. This approach concentrates on n-ary activity and subprocess correspon-
dences and does not tackle mismatches related to the control flow structure.

Resolution of small differences that exist between process models is also a key
aspect of process change management. In this context, differences are between
multiple versions of a process model. Evolution of a process model is realised
through elementary change operations. These operations can be aggregated to
more abstract change patterns as proposed by the authors of [14]. Thus, change
patterns also classify common mismatches between process models. In case of the
absence of a change log, process differences can be detected and resolved based
on existing correspondences between process model versions [15]. However, in
contrast to our work, process change management assumes that differences are a
result of a transformation of a process based on clearly defined change operations.

Existing work in the field of process similarity is also related to our work.
Although approaches targeting the verification of processes, such as trace equiv-
alence [16] and bisimulation [17], are restricted to Boolean answers with respect



13

to the similarity of processes, other approaches provide more nuanced notions.
The authors of [18] present a method to measure similarity between process mod-
els based on the enforced execution constraints. On the other hand, a similarity
measure might also be grounded on the aforementioned change operations as it
was shown in [19]. These approaches relate to our work, as they might inspire a
consistency notion that is able to cope with our mismatches.

Shifting the focus from the differences between related process models to
issues that result from abstractions, inspiring work has been published in the field
of behaviour inheritance. Here, the main idea is the adaptation of inheritance
notions known for structural aspects in the context of object-oriented design
to behavioural aspects. In [20] Basten et al. present a full-fledged framework
based on labelled transition systems and branching bisimulation. The authors
introduce different notions of behaviour inheritance, namely protocol inheritance,
projection inheritance, and combinations of these basic notions. In the case of
protocol inheritance, a model inherits the behaviour of a parent model, if it
shows the same external behaviour when all actions that are not part of the
parent model are blocked. On the other hand, projection inheritance is fulfilled,
if a model shows the same external behaviour as the parent model, if all actions
that are not part of the parent model are hidden. In [21] the authors show the
application of these notions for UML activity diagrams, sequence diagrams, and
statechart diagrams.

Similar ideas have been presented in [22, 23]. Here, the authors distinguish in-
vocation consistency and observation consistency depending on whether a model
inherits the interface of a parent model or its externally observable behaviour. In
[22] both notions are defined based on labelled transition systems. Based thereon,
the application of these notions in the context of UML statechart diagrams is
shown in [23]. As discussed in [20], invocation consistency and observation consis-
tency directly correspond to the aforementioned notions, i.e. protocol inheritance
and projection inheritance.

Concentrating on the actions that are invocable, Stumptner et al. introduce
weak invocation consistency and strong invocation consistency in [24]. While
weak invocation consistency corresponds to the invocation consistency and pro-
tocol inheritance, strong invocation consistency enforced additional constraints.
That is, it must be possible to use a model in the same way as its parent, even if
added actions (not inherited from the parent) are used. Both notions are defined
for object/behaviour diagrams (OBD), while the authors also show how UML
statechart diagrams can be mapped to OBDs.

Although the ideas on behavioural inheritance are highly related to our work,
none of the introduced notions can be applied in our scenarios. In general, the
existing notions are too restrictive for a scenario as introduced in section ??. All
notions support only a limited variety of mismatches. The authors of the most
liberal notion, namely life-cycle inheritance, list a set of inheritance preserving
transformation rules in [20]. The insertion of activities between existing ones
or the addition of loops containing new actions are examples for these rules.
However, everything that goes beyond these rules, for instance differences in the



14

process instantiation mechanism, does not preserve consistency. We can sum-
marise that all of these consistency notions assume that behaviour is added in
a structural way (e.g. iteration, choice, sequential or parallel composition) in
the course of refinement of process models. This assumption does not hold for
scenarios that show our mismatches.

Several of our identified mismatches are also addressed in the context of
abstraction mechanisms for process models. Given a complex and full-fledged
model, abstraction approaches apply reduction algorithms to generate a simpli-
fied model. Such an abstraction might be driven by the aim to limit reasoning
effort or to extract the main process logic for manual analysis. Grounded on
research conducted on generic graph transformation rules, various abstraction
approaches have been presented. Zerguini [25] defines elemental Petri net trans-
formations that realise an aggregation of reducible subflows and preserves the
soundness criterion. Other approaches focus on the generation of abstract views
of process models. The authors of [26] identify single-entry-single-exit regions
and apply graph aggregation and graph reduction techniques to these regions.
In [27] it is shown, how aggregation of process models can be extended with cus-
tomisation, i.e. a user selects process parts that should not be aggregated. An-
other aggregation algorithm for processes is introduced in [28]. Ensuring preser-
vation of dedicated properties of the process model, the authors of [29] and [30]
introduce aggregation patterns and discuss their influence on these properties.
Although the use-case of process abstraction approaches is different compared
to ours – we want to align multiple existing models on different abstraction lev-
els instead of generating them – the patterns applied in these approaches also
inspired the definition of some of our mismatches.

4 Conclusion

In this paper we elaborated on the disconnect between process models of different
abstraction levels. From our point of view, this disconnect is in the nature of
models that are created for different purposes. Nevertheless, there is a pressing
demand for better alignment of these models.

As a first step towards a framework that allows for vertical alignment of pro-
cess models, we presented an informal description and classification of common
mismatches between these models. As discussed above, these mismatches go well
beyond the differences between process models that are typically handled in the
field of process integration.

References

1. Grover, V., Fiedler, K., Teng, J.: Exploring the Success of Information Technol-
ogy Enabled Businessprocess Reengineering. IEEE Transactions on Engineering
Management 41(3) (August 1994) 276–284

2. Rolland, C., Prakash, N.: Bridging the Gap Between Organisational Needs and
ERP Functionality. Requirements Engineering 5(3) (October 2000) 180–193



15

3. Henkel, M., Zdravkovic, J., Johannesson, P.: Service-based processes: Design for
business and technology. In Aiello, M., Aoyama, M., Curbera, F., Papazoglou,
M.P., eds.: ICSOC, ACM (2004) 21–29

4. Koehler, J., Hauser, R., Küster, J.M., Ryndina, K., Vanhatalo, J., Wahler, M.:
The Role of Visual Modeling and Model Transformations in Business-driven De-
velopment. Electr. Notes Theor. Comput. Sci. 211 (2008) 5–15

5. Decker, G.: Bridging the Gap between Business Processes and existing IT Func-
tionality. In: Proceedings of the 1st International Workshop on Design of Service-
Oriented Applications (WDSOA), ICSOC, Amsterdam, The Netherlands (Decem-
ber 2005) 17–24

6. Dijkman, R.M., Quartel, D.A.C., Pires, L.F., van Sinderen, M.: A Rigorous Ap-
proach to Relate Enterprise and Computational Viewpoints. In: EDOC, IEEE
Computer Society (2004) 187–200

7. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsis-
tency Handling in Multperspective Specifications. IEEE Transactions on Software
Engineering 20(8) (1994) 569–578

8. Dijkman, R.M.: A Classification of Differences between Similar Business Processes.
In: EDOC, IEEE Computer Society (2007) 37–50

9. Dijkman, R.M.: Feedback on Differences between Business Processes. Working
Paper WP-234, Eindhoven University of Technology, Eindhoven, The Netherlands
(2007)

10. Frank, H., Eder, J.: Towards an Automatic Integration of Statecharts. In Akoka,
J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E., eds.: ER. Volume 1728 of
Lecture Notes in Computer Science., Springer (1999) 430–444

11. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior Based Integration
of Composite Business Processes. In van der Aalst, W.M.P., Benatallah, B., Casati,
F., Curbera, F., eds.: Business Process Management. Volume 3649. (2005) 186–204

12. Mendling, J., Simon, C.: Business Process Design by View Integration. [31] 55–64

13. Küster, J.M., Koehler, J., Ryndina, K.: Improving Business Process Models with
Reference Models in Business-Driven Development. [31] 35–44

14. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In Krogstie, J., Opdahl, A.L., Sindre,
G., eds.: CAiSE. Volume 4495 of Lecture Notes in Computer Science., Springer
(2007) 574–588

15. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolving Process
Model Differences in the Absence of a Change Log. In: to appear. (2008)

16. Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Verelst, J.:
When are two Workflows the Same? In Atkinson, M.D., Dehne, F.K.H.A., eds.:
CATS. Volume 41 of CRPIT., Australian Computer Society (2005) 3–11

17. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM (JACM) 43(3) (1996) 555–600

18. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between
Business Process Models. In Bellahsene, Z., Léonard, M., eds.: CAiSE. Volume
5074 of Lecture Notes in Computer Science., Springer (2008) 450–464

19. Li, C., Reichert, M., Wombacher, A.: On Measuring Process Model Similarity
based on High-level Change Operations. In: Proceedings of the 27th International
Conference on Conceptual Modeling (ER). (2008)

20. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and
Algebraic Programming (JLAP) 47(2) (2001) 47–145



16

21. van der Aalst, W.M.: Inheritance of Dynamic Behaviour in UML. In Moldt, D.,
ed.: Proceedings of the Second International Workshop on Modelling of Objects,
Components, and Agents (MOCA). Number PB-561 in DAIM, Aarhus, Denmark
(August 2002) 105–120

22. Ebert, J., Engels, G.: Observable or Invocable Behaviour - You Have to Choose.
Technical Report 94-38, Department of Computer Science, Leiden University (De-
cember 1994)

23. Engels, G., Heckel, R., Küster, J.M.: Rule-Based Specification of Behavioral Con-
sistency Based on the UML Meta-model. In Gogolla, M., Kobryn, C., eds.: UML.
Volume 2185 of Lecture Notes in Computer Science., Springer (2001) 272–286

24. Stumptner, M., Schrefl, M.: Behavior consistent inheritance in uml. In: ER. (2000)
527–542

25. Zerguini, L.: A Novel Hierarchical Method For Decomposition And Design Of
Workflow Models. Journal of Integrated Design & Process Science 8(2) (2004)
65–74

26. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In Alonso,
G., Dadam, P., Rosemann, M., eds.: BPM. Volume 4714 of Lecture Notes in Com-
puter Science., Springer (2007) 88–95

27. Eshuis, R., Grefen, P.W.P.J.: Constructing Customized Process Views. Data &
Knowledge Engineering 64(2) (2008) 419–438

28. Liu, D.R., Shen, M.: Workflow Modeling for Virtual Processes: an Order-Preserving
Process-View Approach. Information Systems 28(6) (2003) 505–532

29. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of Service
for Workflows and Web Service Processes. Journal of Web Semantics 1(3) (2004)
281–308

30. Polyvyanyy, A., Smirnov, S., Weske, M.: Business Process Model Abstraction
(2008) to appear.

31. Eder, J., Dustdar, S., eds.: Business Process Management Workshops, BPM 2006
International Workshops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vienna,
Austria, September 4-7, 2006, Proceedings. In Eder, J., Dustdar, S., eds.: Busi-
ness Process Management Workshops. Volume 4103 of Lecture Notes in Computer
Science., Springer (2006)


