Lightweight Collaboration Management

Matthias Kunze
Hagen Overdick

Alexander Grosskopf
Matthias Weidlich

Hasso-Plattner-Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{matthias.kunze, alexander.grosskopf, hagen.overdick, matthias.weidlich}@hpi.uni-potsdam.de

ABSTRACT

Collaboration processes are generally coordinated without an
explicit notion of a guiding process. Even though this kind
of work is performed in a rather structured manner, explicit
software support to coordinate these processes is rare. On
the other hand, process automation is mainly considered for
highly frequent processes, due to the cumbersome setup of
adequate systems and the process implementation effort.

This paper presents a mashup that effectively coordinates
humans who strive for a collaborative goal. Participants can
design and enact their processes right away; a lightweight pro-
cess execution engine automatically coordinates participants
through correlated messages. In contrast to classic mashups,
we turn the architecture upside down and orchestrate Web
applications and their respective service APIs. A process
map, similar to classic mapping mashups, gives insight into
the current state of a process and its activities as well as
information that is required to evaluate and trace process
history.

Categories and Subject Descriptors

D.2.11 [SOFTWARE ENGINEERING]: Software Archi-
tectures— Patterns; H.3.5 INFORMATION STORAGE
AND RETRIEVAL]: Online Information Services— Web-
based services; H.4.1 INFORMATION SYSTEMS AP-
PLICATIONS]: Office Automation— Workflow manage-
ment; H.5.3 [INFORMATION INTERFACES AND
PRESENTATION]: Group and Organization Interfaces—
Collaborative computing

General Terms
Design, Experimentation, Human Factors

1. INTRODUCTION

The term Web 2.0, often referring to a set of technologies
comprising an architecture of participation [30], does also
relate to a changed perception of the Web—a paradigm shift

from consumption to participation. On the one hand, people
are connecting through social networks, exposing their social
and professional life in weblogs, and share their knowledge
in wikis. On the other hand, people located at distant places
collaborate to achieve a common goal. As a result, the role
of message exchanges changed dramatically. Messages are
no longer used solely for knowledge exchange. Instead, they
are often used to coordinate people that work together.

The majority of these collaborative efforts are, often un-
consciously, conducted in a rather structured manner; they
comply with previously agreed guidelines or business rules.
In many cases they involve a certain order of tasks that are
dedicated to particular participants. Consequently, these
efforts can be regarded as processes: a set of activities, per-
formed in coordination in an organizational and technical
environment, that realize a particular goal [39].

The area of Business Process Management addresses the
explicit support of processes on operational and organiza-
tional levels. Mature solutions exist to automate complex
and highly frequent processes in very efficient ways. How-
ever, most processes are accomplished by persons and not by
workflow engines. Such processes naturally have a small fre-
quency, setting them up formally is considered cumbersome
and not worthwhile.

In this paper, we identify and analyze the challenges of col-
laboration management by means of business processes and
elaborate on a software solution to support these processes
and guide participants through collaborative processes. We
argue that the common way of organizing a collaboration in
an ad-hoc way has various drawbacks, such as a lack of consis-
tency, transparency, and traceability. However, full-fledged
collaboration management systems often imply immense con-
figuration overhead and do not integrate unobtrusively with
existing work places of collaboration participants.

Therefore, we propose to combine the concepts of process-
driven collaboration management with the mashup paradigm.
Typically, mashups are a lightweight combination of existing
information into a new view and “save valuable time, since
all data can be put in one page” [32]. The main benefit of
mashups is considered to gain insight among information that
originates from disparate sources [17, 19, 43]. For the setting
of process-driven collaboration management, we leverage
the very same concepts and technologies mashups use for
lightweight application composition, but turn the classic

model upside down. Instead of aggregating disparate services
into one, we orchestrate Web applications and their respective
service APIs behind the scenes and retain their interface to
users. That, in turn, allows for lightweight process-driven
collaboration management. In order to validate our concept,
we implemented a research prototype. We also report on
findings we made, using the prototype in the course of writing
this paper.

The remainder of this paper is structured as follows. Section 2
discusses the drawbacks of organizing collaboration in an ad-
hoc fashion and derives requirements for information systems
aiming at support for collaboration processes. Based thereon,
we propose an architectural style in Section 3 and compare
it to known architectural styles. In Section 4, we present
our prototype and the lessons learned from implementing
and using the solution. Finally, we review related work in
Section 5 and conclude the paper in Section 6.

2. COLLABORATION MANAGEMENT

While there is no doubt about the importance of Business
Process Management in the context of highly automated
processes, human-centered processes are often neglected. Al-
though there are a few drivers that lead to the creation of
process models for human-centered processes, among them
staff planning, employee training, and business certification,
the way people conduct processes in their everyday life is
rarely considered. In particular, it is a common observation
that collaboration processes are coordinated without an ex-
plicit notion of a process, even though this kind of work is
performed in a rather structured manner.

Focusing on these implicit collaboration processes as our use
case, we first shortly sketch how these processes are realized
in Section 2.1. Based thereon, we derive requirements for
information systems that aim at supporting collaboration pro-
cesses with an explicit process representation in Section 2.2.

2.1 Realization of Collaboration

Management
In order to illustrate the major activities of a collaboration
process, we use the process of jointly writing a scientific
paper as a well-known collaboration example.

Setup & Enact. Usually, collaboration is initiated by
agreeing on a roadmap in order to reach a certain goal.
Further on, tasks are assigned to participants. Often the
enactment of collaboration is manifested in a kick-off meeting,
while task assignments are captured in meeting protocols
that are distributed via e-mail or wiki pages. Enactment also
involves the setup of the infrastructure that is needed for
further collaboration. In case of writing a scientific paper,
the process is initiated by a meeting in which the authors
team up, agree on a submission target, and assign work
packages. The latter includes the duty to write a certain
paper section, to prepare and conduct experiments, or to
implement certain algorithms. In addition, a version control
repository is created and all authors are provided with access.

Communicate & Coordinate. During the collaboration,
people interact with the help of short messages: e-mail,
instant messaging, and recently also through micro blogging

such as Twitter. If one participant finishes a task, they signal
this to participants responsible for subsequent tasks and thus,
coordinate the work based on the roadmap. With respect
to the exemplary process, in this phase an author notifies
the co-authors that they committed a new section in the
paper and request feedback. Further on, issues that come up
during an implementation of the theoretical concepts of the
paper are discussed via email. Based on the progress in the
repository, the coordinating author (often, the first author)
contacts their co-authors, such that they meet the deadlines
as agreed.

Trace & Evaluate. Evidently, coordination of the collabo-
ration assumes an overview of the current state of the process
in order to ensure compliance with the roadmap as agreed.
In addition, participants want to know when they can expect
their next task to manage their workload. That, in turn,
involves various interactions using short messages. In case
of the paper writing scenario, the history of exchanged mes-
sages between the authors as well as the commit log of the
repository can be exploited for the purpose of traceability
and evaluation. For instance, the design decisions that have
been taken in order to come up with a certain architecture
for the implementation can be reconstructed. Further on,
information of the commit log can be leveraged for improving
time estimations when writing the next paper.

It is worth to mention that we do not consider these activities
to be done in a linear order. In particular, coordination and
evaluation are tightly coupled, as coordination might be
based on the evaluation of the progress for obvious reasons.

The aforementioned realization of a collaboration process in
an implicit fashion reveals several drawbacks.

Inefficient. The implicit decentralized coordination of par-
ticipants breaks the flow of work. That is, a participant
might have to wait for the approval of a previous par-
ticipant, even though the process allows immediate
action.

Intransparent. Discussions typically require various inter-
actions leading to ‘ping-pong’ processes that are either
not externally visible or hard to trace due to the infor-
mation density and the multitude of used communica-
tion channels.

Inconsistent. Inconsistencies between the processing as
agreed and the ‘natural’ flow of work cannot be de-
tected due to the aforementioned lack of transparency.

Not measurable. The implicit coordination results in the
absence of any global progress information that might
be measured. Therefore, it is not possible to compare
similar collaborations in a reasonable way.

Scattered artifacts. Information artifacts that are used
or created in the scope of the collaboration reside at
different data stores and are not linked to the message
based discussion and process coordination.

2.2 Requirements for Collaboration Support
Addressing the drawbacks of a traditional realization of col-
laboration processes, we identify the following requirements
for information systems that aim at full-fledged support for
collaboration processes.

%A
A‘%
Mashup Ul Uly Ul,
Mashup Logic Web App+ « | Web App,
A Web AP, Web AP,
‘i*

R
Web API4 Web API, vs
Web App Web Appn Mashup Logic

Figure 1: Architectural styles of mashups: classic

mashup (left), reverse mashup (right)

Explicit process representation. In order to overcome
inefficiency caused by the decentralized coordination,
an explicit process representation is needed. Without
any formalization of the collaboration roadmap, de-
lays that result from manual coordination cannot be
eliminated.

Correlated messages. Traceability of the collaboration re-
quires that all discussions are externally visible. To
cope with the information overhead that is implied by
such a transparency, message correlation is inevitable.
Albeit an essential feature of process execution engines
(cf., [B]), correlation that goes beyond simple tracing
of email subjects is typically neglected for human-to-
human interaction. In particular, that holds for inter-
actions spanning multiple communication channels.

Directed global messages. Of course, coordination requires
directed messages between two participants. However,
the existence of a direct addressee should not preclude
the possibility to trace the message for the remain-
ing participants. Therefore, a mechanism that allows
for global tracing (that includes an appropriate search
engine) of directed messages is essential. Here, we
consider the common usage of Carbon Copies (CC) in
emails to be counterproductive as, besides the fact that
it is error-prone, it implies a push mechanism, where a
pull strategy would be more convenient.

Unobtrusiveness. As mentioned above, various communi-
cation channels and tools are already used as part of
the collaboration. Therefore, support by information
systems should be as unobtrusive as possible. Instead
of introducing new tools, existing infrastructure should
be leveraged to provide better collaboration support.
That, in turn, enables seamless integration into the
existing work places of collaboration participants.

System integration. Linking between different sources of
collaboration information has to be supported in order
to avoid scattered artifacts. Here, linking between
information that is purely used for coordination and
the actual representation of the collaboration subject
is of particular importance.

3. REVERSE MASHUP ARCHITECTURE

Mashups are applications that consume services, i.e., content
and functionality, from disparate sources on the Web and

aggregate them in new and innovative ways. Mashups draw
upon these services and create value by providing immediate
solutions to situational needs and insight through connecting
related information [35].

Usually, service providers publish APIs as a by-product to
a Web application as so-called Web APIs: interfaces that
offer a resource via HTTP. Sometimes the providers of these
services are not aware of the reuse of the capabilities they
offer, e.g., when a mashup scrapes the rendered Web sites
to retrieve information that would otherwise be inaccessible
[22]. In the context of this work, we assume service providers
to explicitly offer Web APIs as an alternative method to
access an application’s services, regardless of whether these
services provide content or functionality.

Much work has been conducted studying mashups and deriv-
ing certain characteristics that eventually led to observations
and recommendations in the form of reference models and
reference architectures for mashups, e.g., [6, 9, 19, 22, 24].
These observations share the same understanding of an ar-
chitectural style for mashups: Services of heterogeneous type
are offered through Web APIs to be aggregated by mash-
ups that act as intermediaries between the user and the
services provided. This evolved from the original desire to
gain insight among several disparate information sources at a
certain point in time, rendering an intermediary application
into an aggregator of resources on the Web. Thus, especially
data-centric mashups provide realtime information at a single
point in time, e.g., [29, 33, 36, 38, 41]. The corresponding
architectural style of classic mashups is illustrated in the
left part of Figure 1: Mashups encapsulate services and inte-
grate them into a single and unified application, comprising
application logic and the user interface.

The present use case—collaboration management—imposes
different requirements. The application needs to provide a
continuous service, interacting with remote services over a
period of time, whereas, nevertheless, reuse of existing re-
sources is pertinent. The additional need to preserve existing
user interfaces of services, which people incorporate into their
daily work already, led to an architectural style that supports
coordination among services rather than aggregating content.
These user interfaces may originate from different kinds of
clients for existing services, such as desktop clients, Web
clients, or mobile clients. Thus, the services become interme-
diaries between the users and the mashup application logic,
turning the classic architecture upside down. This motivated
the term reverse mashup architecture, which is depicted in
the right part of Figure 1.

Mashups corresponding to this architecture integrate different
systems seamlessly to support a workflow among involved
systems and participants. This architectural style is well
known from enterprise application integration [18]. Many
systems are orchestrated to realize a higher goal, typically a
business process. Specialized solutions, the enterprise services
bus [8], evolved to support this integration paradigm. They
became complex systems themselves when adding support for
enterprise requirements such as adapters for legacy systems,
fail-safe message queues, and data mapping tools.

The reverse mashup architecture brings this idea to the Web-
environment and leaves behind all the complexity of the
heterogeneous enterprise world. Web applications become
intermediaries and provide user interfaces to satisfy a partic-
ular task, which is, in turn, leveraged by the mashup through
the service’s Web API to fulfill a higher endeavor. We choose
systems by functionality and accessibility from a large set of
publicly available services. We enhance the genuine service
by integrating information from other systems and services.
As all mashups we don’t claim to be failsafe. Web standards
such as HTTP and JSON ease the burden of integration and
thus allow for new lightweight solutions. We can integrate
services that offer an API that is specific to the purpose of
the service rather than its originally envisioned application
scenarios. The REST architectural style addresses these
issues by constraining the interface of a service to remain
application independent [16].

We encompass the Web application user interfaces and see
the corresponding Web APIs not as alternative but comple-
menting interfaces. While participants keep using the user
interface provided by the respective Web application, the
mashup uses the corresponding Web API to interact with
the service. Thus, the mashup plays the role of a coordina-
tor among the services, rather than one of an aggregator of
content, which is the case for the majority of mashups.

4. PROTOTYPE

In order to validate our concept of a reverse mashup archi-
tecture and to study the guided collaboration of humans
through explicit processes, we implemented a research proto-
type. First, Section 4.1 introduces the prototype following
on the major activities of collaboration management as pre-
sented in Section 2.1. Second, we report on our experience
on using this prototype in Section 4.2.

4.1 Architecture and Implementation

The architecture of the mashup is depicted in Figure 2.
It comprises three applications: Oryx, Twitter, and Xen-
odot. Xenodot provides the implementation platform for our
mashup, whereas the first two are accessed in the reverse
mashup style.

Setup & Enact. Collaboration management starts with
agreeing on a process and its explicit representation that lays
the groundwork for its future execution and evaluation. We
resorted to Oryx [11] as model designer. Oryx is an extensi-
ble process modeling platform that allows users to rapidly
create process models of various languages on the Web and
share them with others. Process languages are implemented
as stencil sets that define notation and syntax of a modeling
language, i.e., its graphical representation and rules for the
correct composition of model elements. As process language
for our mashup, we chose a subset of the Business Process
Modeling Notation (BPMN) required to form simple yet eas-
ily understandable processes [44]. In addition, swimlanes are
necessary to define participants responsible for conducting
certain tasks.

Figure 3 shows an example process: Labels of the swimlanes
refer to the participants responsible for corresponding tasks.
In our prototype, these labels equal the screen names of the

follow URLs,
get process

create process instance information

model

read and write
twitter messages

Oryx Ul Twitter Ul | C’ass’cﬂas"“p
oryx-project.org twitter.com
Oryx API Twitter API
R
10 o+ ;
1
| model importer | |execution enginel | classic ”735””"
logic
enodot

AN AN

Y Y
v v
process process process
languages models instances

Figure 2: Architecture of the Prototype

participants’ Twitter accounts, which we use as communica-
tion service, discussed in detail below.

Each process model itself is a Web resource, identified by a
URL, its representation being a hypertext document that
contains hyperlinks. This allows users to attach any kind
of information to a process model or model element. For
instance, a jointly written paper could be linked via a URL
that points to a document repository.

While Oryx provides its own model repository, we needed a
process execution engine that can instantiate processes and
coordinate according activities. Xenodot is a Web-based
process engine that employs the principles imposed by the
REST architectural style to store and execute processes.
Xenodot uses an HTTP-based document store—Apache
CouchDB [3]—to represent elements of process languages,
process models, and process instances in a uniform way [31].
Hence, all artifacts in languages, models, and instances are
Web resources having their own identity and life cycle and
are co-related through URLs.

Process execution with regards to collaboration management
is implemented as a specification of operational semantics
for the modeling language, i.e., the chosen subset of BPMN.
These operational semantics are stored within the language
documents within Xenodot: Each model element type has
a specific behavior that describes the respective instance’s
life cycle and actions performed to advance the life cycle’s
state. At the time of process instantiation, the model and its
language’s operational semantics are compiled into the pro-
cess instance’s document store as map/reduce functions [10],
which in turn are used by the Xenodot execution engine to
provide Web-based process enactment.

Communicate & Coordinate. We motivated the use of
directed, globally visible messages for participant commu-
nication in Section 2.2. Twitter is a well suited message
service for this purpose: Messages can be directed to particu-
lar participants, while they are generally visible to everyone
else.! Further, through the concept of replying to a previous
message, messages can be correlated and discussion graphs
can be derived. A simple RESTful API allows sending and
retrieving messages. Thus, a robot that is bound to the
execution of a process instance could easily communicate
through Twitter.

Coordination of participants is realized by a small set of
commands that describe the advance of the process’ state.
A message comprises at least the addressee of the message,
i.e., its Twitter screen name, the URL of a process element,
and one command. Messages can contain further information
that is considered valuable for documentation purposes.

The robot includes the participants’ screen names to direct
messages to a participant who is responsible for the corre-
sponding action. Participants need to include the robot’s
screen name in their responses to advance the process’ state.
At process runtime, the robot requests a participant to con-
duct a certain task by sending him a start message that
includes a link to the corresponding process instance activity.
When the participant finished this task, they reply with a
done message containing the same URL. The process engine
regularly updates the messages directed to the robot. When
it finds a new command, it interprets it and advances the
process’ state according to the behavior specified in the mod-
eling language. Among others, we distinguish the following
command messages.

@participant <://url> start is sent by the robot to in-
form a participant that they are in charge to conduct
a certain activity.

@robot <://url> done is then replied to indicate that the
activity has been finished by a participant.

@participant <://xor-url> decide is sent by the robot
to ask a participant to choose from several alternative
outgoing paths from an exclusive gateway (XOR split).

@robot <://url> select isthen replied, containing the URL
of the first activity of the chosen path.

Each URL in a message aims at the resource of the according
process instance element; its representation gives insight
about the element’s type, name, and current state. It further
offers prepared Twitter messages to advance the particular
element’s state, based on the current state of that element.
For example, the representation of an exclusive gateway
provides means to choose from a set of alternative outgoing
paths.

Trace & Evaluate. In human driven processes, it is impor-
tant to establish transparency among activities. Participants

!Twitter (http://twitter.com) has been designed as a pub-
lic communication service. Therefore, users do not assume
their conversations private.

need to understand preconditions and impact of their actions
to make proper decisions. Thus, advances in the process’
state need to be globally visible, cf., Section 2.1.

We approached this requirement by providing a process map
in the form of classic mashups: For each process instance, an
interactive, visual representation offers an overview of the
process’ state and related Twitter messages, and allows users
to trace actions carried out in the past. If a user clicks on the
URL provided with each commanding Twitter message, they
will be presented with that map and detailed information
about the selected process element. This process map is
depicted in Figure 3. Finished activities are highlighted in
green, live activities in blue. It is possible to skip activities
explicitly for any reason; such activities will be highlighted
red. Users can choose any process element in the map to
obtain particular information about it.

The same information used to obtain the current state of
a process can be used to measure the overall performance
of a process. Information stored with each Twitter message
allows relating actions that advanced the state of a process
to participant roles. Such profiles could then be compared
with other artifacts of the collaboration, e.g., document
repositories. For example, this allows comparing the amount
of time it took to conduct a certain task with the amount of
work that has been done. Such information could then be
used to refine and improve the process for further application.

4.2 Lessons Learned and Future Work

As mentioned before, we used our research prototype in the
course of writing this paper. This section summarizes our
experiences in this context.

Implementation. The chosen architecture, introduced in
Section 4.1, proved useful during implementation. Adopt-
ing the APIs of the respective applications was easy and
the reverse mashup architecture relieved us from building
user interfaces for these services. Both accessed services,
Oryx and Twitter, offered JSON as data interchange format,
while the components of our mashup, Xenodot on CouchDB
and the process map in the Web browser, were essentially
implemented using JavaScript. That, in turn, made data
aggregation and service access surprisingly simple, yet effec-
tive.

Still, the lightweight integration of services that are available
with no additional costs would not satisfy requirements for
high reliability or performance, typically met by enterprise
service buses. Time critical processes would suffer from the
high latency of updating a process’ state, which is in the range
of tens of seconds to minutes, as well as the non-pervasive
notification of participants. However, for most use cases in
the context of collaboration management such requirements
are not present. In our scenario of writing a scientific paper,
this issue turned out to be negligible.

Twitter. Twitter proved very suitable to coordinate par-
ticipants in an unobtrusive way. All participants were early
technology adopters and use Twitter on a daily basis. Thus,
Twitter fit well within our daily interactions. The reverse
mashup architecture enabled every participant to use their
Twitter client of choice on their desktop computer and mobile

http://twitter.com

OOPSLA Demo

4| » || + |@http://b3mn.org/oopsla/instance/demo/
[## Apple Yahoo! CoogleMaps YouTube Wikipedia News (906)v Beliebtv

¢ | (Q Google

Alex

write related " : -
lworks chapter review paper |

Matthias (W)
Ha

chaptar

& http://b3mn.org/oops|alinstanceldemolly done (AND)

BPT

Matthias (K)

write write
architecture condlusion
chapter \ chapter

done

AR

submit paper hitp://b3mn.
start write prototype chapter

fagen

write %
Lll imptement orice
protatype + protor N-'-‘

i@oopsiagpe
ttp:f/b3mn. orgleopslafinstanceldemo/Kd done

z

&S (at)Matthias w)

z

start write scenario

I x|
mark as done
skip this

description chapter

W g
5
&

i@oopsiadgpe
hitp://b3mn.orgloopslalinstance/demolJL done

Figure 3: Process map, illustrating the state of a process instance.

phone. The restriction to few characters in Twitter messages
forces authors to be short and focused, which supports quick
comprehension of received messages on the one hand, but
also fast responses on the other, thus reducing the amount
of time spent to interact. Since we provide also a visually
augmented map of the process, responding to commands is
only few clicks away and blends seamlessly with the way we
interact with the Web: discover through following hyperlinks.

The ability to comprehend the process in its entirety allowed
us also to get in contact with other participants and to start
discussions. Our expectations that such discussions need
more than 140 characters and are carried out through face-
to-face meetings, telephone and instant messaging rather
than through Twitter messages proved to hold. However,
using Twitter reduces the amount of emails sent to coordinate
with each other; the process map gives immediate insight into
the communication history, the process state, and upcoming
tasks.

Process Flexibility. Above, we presented a simple process
with few expressions in the modeling language and rather
coarse-grained activities. It turned out that these means for
simplification worked quite well. More meaningful expres-
sions, such as events, could be used to include escalation
scenarios, e.g., sending reminder messages, into the process
model. However, we did not address process experts and,
thus, kept the set of expressions small.

From time to time, we had to deviate from the ideal process
to react to new situations, e.g., after a brainstorming session,
it turned out that the related work section would be written
by another author. Such changes have not been accounted
for in the process. Since the process artifact—the paper
written—was not strictly bound to the process coordination
engine, this deviation did not cause significant problems.
These deviations occurred due to the creative character of
the process of writing a paper. Still, many less creative and
rather static processes are conducted among people that can
benefit from explicit coordination, e.g., processes of public
administrations.

S. RELATED WORK

In this section, we focus on three areas of related research,
namely process-driven collaboration management, service-
based system integration, and mashups.

There is a large body of research on Computer Supported
Cooperative Work (CSCW) and respective systems (cf., [27,
14, 37]). Good overviews of collaboration models and clas-
sifications can be found in [4, 13]. While collaboration
management has been investigated from a variety of angles,
we restrict our discussion to workflow driven collaboration
approaches. Magdaleno et al. elaborate on the potential
benefits of considering collaboration aspects in process mod-
eling [26]. Based on an evaluation of the organization’s col-
laboration maturity level, common descriptions of business
processes are enriched with explicit collaboration activities.
Such coordination, in turn, is at the core of process-aware
collaboration systems. For instance, the Caramba system [12]
aims at combining workflow, groupware, and project man-
agement functionalities to allow for holistic support of dis-
tributed collaborations. It, therefore, meets various of our
requirements defined in Section 2.2. Still, the whole infras-
tructure is set up from scratch in a desktop application,
whereas our approach is a mashup of existing functionality
in order to be as unobtrusive as possible. Nevertheless, the
functionality offered by Caramba might guide the choice of
what to mashup in our setting.

Further on, our approach has to be related to the classical
approaches for system integration. Starting with the SOA
triumvirate of service provider, requester, and broker [7],
service orientation became the predominant paradigm in
system integration [2]. In particular, our approach can be
seen as an enterprise service bus [8] lifted to the world of
lightweight Web-based applications. Therefore, the research
done in the field of enterprise application integration, e.g.,
on integration patterns [18] of which many can be found in
existing mashup platforms, such as [41, 29, 36], provides the
baseline for our human-centered integration scenarios.

In contrast to classic service-oriented architectures that fo-
cus on contractual integration of homogeneous interfaces
(mainly WSDL/SOAP), mashups address a rather ad-hoc
cooperation of heterogeneous resources [23]. Most of these
resources provide information structured as collections of
semi-structured documents, such as XML collections, data-
base results, records scraped from Web pages. However,
the diversity of mashed resources and mashup implemen-
tations, e.g., [21, 25, 28, 33, 38, 40|, discloses the lack of
common, standardized interfaces. This is a general weakness
inhibiting the desired goal of making mashups universally
easy to develop even for end-users [20], up to now. Although
several attempts exist to homogenize interfaces and mashup-
mechanisms, e.g., [1, 34, 38, 40, 42], these approaches are
in early stages and compete with each other. Web-APIs
providing functionality largely implement HTTP-based com-
munication protocols, some complying with REST. However,
due to the ad-hoc character of mashups, there are generally
no contracts these protocols conform to, and thus require
custom adapters at the mashup site. The reverse mashup
architecture does not address particular mechanisms to ingest
resources and Web APIs, cf., [22], and thus, is afflicted by
the same issue.

6. CONCLUSION

In this paper, we first introduced the observation that much
human interaction is performed in a rather structured man-
ner and discussed that such implicit processes have significant
drawbacks, i.e., they are often inefficiently conducted, not
transparent to the participants, thus inconsistent, and not
measurable. Process artifacts are often scattered over differ-
ent places.

We proposed a lightweight collaboration management system
that guides participants through collaboration efforts by
making implicit processes explicit, that is, using process
models to prescribe the interaction between participants.
Using a message service that allows the correlation of publicly
visible messages, we addressed most of the aforementioned
deficiencies of implicit processes. Setting up such a system
in the Web, we can refer to any artifact that has a URL.

Our prototype leverages typical mashup characteristics and
properties, such as combining Web APIs to create new appli-
cations, yet reveals a new architectural paradigm for mashups:
The reverse mashup architecture suggests using the services
through their conventional application user interfaces and
orchestrating the respective services in the background. For
example, we use the Twitter API to coordinate collabora-
tion in an unobtrusive way. A message is sent from the
process execution engine, instructing participants to start
their respective task.

In contrast to the classic architectural style of mashups that
mainly addresses realtime insight among several resources
at a certain point in time, the reverse mashup architecture
is generally beneficial for mashups that need to provide a
continuous service and, as such, suits the purpose to re-
act to externally changed data and coordinate people in a
collaboration process.

The presented prototype is an approach to understanding
how collaboration can be supported in a social environment,

applying knowledge from the domains of Business Process
Management and Web 2.0. We believe that considerable
benefits can yield from combining these disciplines and find
this confirmed in similar scientific attempts elaborating on
how business processes and novel social networking tools,
such as Twitter, can be combined.?

7. REFERENCES
[1] S. Abiteboul, I. Manolescu, and S. Zoupanos. Optimax:

efficient support for data-intensive mash-ups. ICDFE
’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, Jan 2008.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services: Concepts, Architectures and Applications.
Springer, 2004.

[3] J. C. Anderson, N. Slater, and J. Lehnardt. CouchDB -
The Definitive Guide. O’Reilly Media, Inc., 2009.

[4] G. Bafoutsou and G. Mentzas. Review and functional
classification of collaborative systems. International
Journal of Information Management, 22(4):281-305,
August 2002.

[5] A. P. Barros, G. Decker, M. Dumas, and F. Weber.
Correlation patterns in service-oriented architectures.
In M. B. Dwyer and A. Lopes, editors, FASE, volume
4422 of Lecture Notes in Computer Science, pages
245-259. Springer, 2007.

[6] A. Bradley. Reference Architecture for Enterprise
"Mashups’. Technical report, Gartner Research, Sep
2007.

[7] S. Burbeck. Technical report, IBM Software Group,
2000.

[8] D. Chappell. Enterprise Service Bus. Theory in
Practice. O'Reilly, 2004.

[9] L. Clarkin and J. Holmes. Enterprise Mashups. The

Architecture Journal, 13:24-28, 2007.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. pages 137-150, December
2004.

[11] G. Decker, H. Overdick, and M. Weske. Oryx —
sharing conceptual models on the web. In ER ’08:
Proceedings of the 27th International Conference on
Conceptual Modeling, pages 536-537, Berlin,
Heidelberg, 2008. Springer-Verlag.

[12] S. Dustdar. Caramba - a process-aware collaboration
system supporting ad hoc and collaborative processes
in virtual teams. Distributed and Parallel Databases,
15(1):45-66, 2004.

[13] C. A. Ellis. A framework and mathematical model for
collaboration technology. In W. Conen and
G. Neumann, editors, Coordination Technology for
Collaborative Applications, volume 1364 of Lecture
Notes in Computer Science, pages 121-144. Springer,
1996.

[14] C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware:
Some issues and experiences. Commun. ACM,
34(1):39-58, 1991.

[15] G. Feuerlicht and W. Lamersdorf, editors.
Service-Oriented Computing - ICSOC 2008 Workshops,
I1CSOC 2008 International Workshops, Sydney,

*http://www.ariscommunity.com/users/mrosemann/
2009-08-07-where-bpm-and-Twitter-could-meet

http://www.ariscommunity.com/users/mrosemann/2009-08-07-where-bpm-and-Twitter-could-meet
http://www.ariscommunity.com/users/mrosemann/2009-08-07-where-bpm-and-Twitter-could-meet

[16]

[17]

[20]

[21]

[25]

[26]

[27]

[28]

Australia, December 1st, 2008, Revised Selected Papers,
volume 5472 of Lecture Notes in Computer Science.
Springer, 2009.

R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

S. Govardhan and G. Feuerlicht. Itinerary planner: A
mashup case study. In E. D. Nitto and M. Ripeanu,
editors, ICSOC Workshops, volume 4907 of Lecture

Notes in Computer Science, pages 3—14. Springer, 2007.

G. Hohpe and B. Woolf. Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, 2003.

V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and

C. Schroth. Enterprise Mashups: Design Principles
towards the Long Tail of User Needs. In SCC' ’08:
Proceedings of the 2008 IEEE International Conference
on Services Computing, pages 601-602, Washington,
DC, USA, 2008. IEEE Computer Society.

T. Janner, R. Siebeck, C. Schroth, and V. Hoyer.
Patterns for enterprise mashups in b2b collaborations
to foster lightweight composition and end user
development. ICWS ’09: IEEE International
conference on Web Services 2009, 0:976-983, 2009.

W. Kongdenfha, B. Benatallah, J. Vayssiéere,

R. Saint-Paul, and F. Casati. Rapid development of
spreadsheet-based web mashups. WWW °09:
Proceedings of the 18th international conference on
World wide web, Apr 2009.

M. Kunze. Business Process Mashups — An Analysis of
Mashups and their Value Proposition for Business
Process Management. Master’s thesis, Hasso Plattner
Institut an der Universitit Potsdam, 2009.

N. Laga, E. Bertin, and N. Crespi. A web based
framework for rapid integration of enterprise
applications. ICPS ’09: Proceedings of the 2009
international conference on Pervasive services, Jul
2009.

J. Lépez, A. Pan, F. Ballas, and P. Montoto. Towards a
Reference Architecture for Enterprise Mashups. In
Actas del Taller de Trabajo ZOCO’08/JISBD.
Integracion de Aplicaciones Web: XIII Jornadas de
Ingenieria del Software y Bases de Datos. Gijén, 7 al
10 de Octubre de 2008, pages 67—76, 2008.

B. Lu, Z. Wu, Y. Ni, G. Xie, C. Zhou, and H. Chen.
smash: semantic-based mashup navigation for data api
network. WWW °09: Proceedings of the 18th

international conference on World wide web, Apr 2009.

A. M. Magdaleno, C. Cappelli, F. A. Baido, F. M.
Santoro, and R. M. de Araujo. A practical experience
in designing business processes to improve
collaboration. In A. H. M. ter Hofstede, B. Benatallah,
and H.-Y. Paik, editors, Business Process Management
Workshops, volume 4928 of Lecture Notes in Computer
Science, pages 156-168. Springer, 2007.

R. Medina-Mora, T. Winograd, R. Flores, and

F. Flores. The action workflow approach to workflow
management technology. Inf. Soc., 9(4), 1993.

G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and
L. Moser. Extracting data records from the web using
tag path clustering. WWW °09: Proceedings of the 18th
international conference on World wide web, Apr 2009.

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

Microsoft. Microsoft Popfly.
http://en.wikipedia.org/wiki/Microsoft_Popfly
(discontinued since 09/2009).

T. O’Reilly. What Is Web 2.0? Design Patterns and
Business Models for the Next Generation of Software.
http://www.oreilly.de/artikel/web20.html, Sep
2005.

H. Overdick and M. A. Czuchra. POEM - Potsdam
Encoding for Models. Services Computing, IEEE
International Conference on, 2:619-620, 2008.

C. Pautasso and M. Frisoni. The mashup atelier. In
Feuerlicht and Lamersdorf [15], pages 155-165.

A. Riabov, E. Boillet, M. Feblowitz, Z. Liu, and

A. Ranganathan. Wishful search: interactive
composition of data mashups. WWW ’08: Proceeding
of the 17th international conference on World Wide
Web, Apr 2008.

M. Sabbouh, J. Higginson, S. Semy, and D. Gagne.
Web mashup scripting language. WWW °07:
Proceedings of the 16th international conference on
World Wide Web, May 2007.

C. Shirky. Situated Software. http://www.shirky.com/
writings/situated_software.html, Mar 2004.

D. Simmen, M. Altinel, V. Markl, S. Padmanabhan,
and A. Singh. Damia: data mashups for intranet
applications. SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, Jun 2008.

L. A. Suchman. Do categories have politics? the
language/action perspective reconsidered. In ECSCW,
pages 1—, 1993.

G. Wang, S. Yang, and Y. Han. Mashroom: end-user
mashup programming using nested tables. WIWW ’09:
Proceedings of the 18th international conference on
World wide web, Apr 2009.

M. Weske. Business Process Management: Concepts,
Languages, Architectures. Springer, 2007.

E. Wohlstadter, P. Li, and B. Cannon. Web service
mashup middleware with partitioning of xml pipelines.
ICWS °09: IEEFE International conference on Web
Services 2009, 0:91-98, 2009.

Yahoo! Yahoo! Pipes.
http://pipes.yahoo.com/pipes/.

J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,

F. Daniel, and M. Matera. A framework for rapid
integration of presentation components. WWW °07:
Proceedings of the 16th international conference on
World Wide Web, May 2007.

S. Yu and C. J. Woodard. Innovation in the
programmable web: Characterizing the mashup
ecosystem. In Feuerlicht and Lamersdorf [15], pages
136-147.

M. zur Muehlen and J. Recker. How Much Language Is
Enough? Theoretical and Practical Use of the Business
Process Modeling Notation. In Z. Bellahsene and

M. Léonard, editors, CAiSE, volume 5074 of Lecture
Notes in Computer Science, pages 465-479. Springer,
2008.

http://en.wikipedia.org/wiki/Microsoft_Popfly
http://www.oreilly.de/artikel/web20.html
http://www.shirky.com/writings/situated_software.html
http://www.shirky.com/writings/situated_software.html
http://pipes.yahoo.com/pipes/

	Introduction
	Collaboration Management
	Realization of Collaboration Management
	Requirements for Collaboration Support

	Reverse Mashup Architecture
	Prototype
	Architecture and Implementation
	Lessons Learned and Future Work

	Related Work
	Conclusion
	References

