
An Iterative Approach for Business Process Template
Synthesis from Compliance Rules

Ahmed Awad1, Rajeev Goré2, James Thomson2, Matthias Weidlich1

1 Hasso Plattner Institute, University of Potsdam, Germany
ahmed.awad@hpi.uni-potsdam.de,matthias.weidlich@hpi.uni-potsdam.de

2 School of Computer Science, The Australian National University, Australia
Rajeev.Gore@anu.edu.au,jimmy.thomson@anu.edu.au

Abstract. Companies have to adhere to compliance requirements. Typically, both,
business experts and compliance experts, are involved in compliance analysis of
business operations. Hence, these experts need a common understanding of the
business processes for effective compliance management. In this paper, we argue
that process templates generated out of compliance requirements can be used as
a basis for negotiation among business and compliance experts. We introduce
a semi automated approach to synthesize process templates out of compliance
requirements expressed in linear temporal logic (LTL). As part of that, we show
how general constraints related to business process execution are incorporated.
Building upon existing work on process mining algorithms, our approach to
synthesize process templates considers not only control-flow, but also data-flow
dependencies. Finally, we elaborate on the application of the derived process
templates and present an implementation of our approach.

Keywords: Process synthesis, Analysis of business process compliance specification,
Process mining

1 Introduction
Recently, there has been a growing interest in compliance checking of business operations.
Financial scandals in large companies led to legislative initiatives, such as SOX [1]. The
purpose of these initiatives is to enforce controls on the business operations. Such controls
relate to the execution order of business activities, the absence of activity execution in a
dedicated data context, or restrictions on role resolution to realize separation of duty.

Driven by these trends, numerous approaches have been presented to address com-
pliance management of business processes. In general, we can distinguish two types of
approaches. First, compliance rules can guide the design of a business process [10, 11].
These approaches ensure compliance by design by identifying compliance violations
in the course of process model creation. Second, existing process models are verified
against compliance rules [8, 4]. Given compliance requirements and a process model as
input, these approaches identify violations on the process model level.

Evidently, addressing compliance during the design of business operations has
many advantages. Non-compliant processing is prevented at an early stage of process
implementation and costly post-implementation compliance verification along with
root cause analysis of non-compliance is not needed. In most cases, process models

that are synthesized from compliance rules cannot be directly used for implementing a
business process. Instead, they should be seen as a blueprint that is used as a basis for
negotiation between business and compliance experts. Hence, we refer to these process
models as process templates in order to emphasize that further refinements are needed
to actually implement the business process. While this approach has been advocated
by other authors, e.g., [10, 9, 26], existing approaches are limited when it comes to
data-dependent compliance requirements.

In this paper, we present an approach to the synthesis of compliant process templates
that avoids some of the pitfalls of existing approaches. We start with a set of compliance
rules specified in LTL. Hence, we do not require the definition of explicit points in
time as in [10, 9], but focus on relative execution order dependencies. Further, we
also consider data flow dependencies between activity executions, which is neglected
in [26]. These rules are then enriched with general constraints related to business process
execution to avoid phenomena such as vacuous satisfiability. Subsequently, a process
template is generated automatically if the compliance requirements are satisfiable. We
also illustrate how generated templates are applied during process design and how the
template generation may identify inconsistencies and open questions. Hence, the template
guides further refinements of the process model and the compliance requirements. To
evaluate the applicability of our approach, we present a prototypical implementation.
Our contribution is a complete approach to process design grounded in compliance rules.

Against this background, the remainder of this paper is structured as follows. The
next section introduces preliminaries for our work, such as the applied formalism.
Section 3 introduces our approach of synthesizing process templates from a given set of
compliance rules. We also elaborate on how to use these templates as a basis for process
design. A prototypical implementation of our approach is presented in Section 4. Finally,
we discuss related work in Section 5 and conclude in Section 6.

2 Preliminaries
This section gives preliminaries for our work. Section 2.1 clarifies our notion of exe-
cution semantics. Section 2.2 presents LTL as the logic used in this paper. Section 2.3
summarizes existing work on generating a behavioral model from a given LTL formula.

2.1 Process Runs as Linear Sequences

In this paper, we rely on trace semantics for process models. An execution sequence σ
of a process model is referred to as a process run or trace – a finite linear sequence of
states σ : s0, s1, . . . , sn with a start state s0 and an end state sn. Evidently, a process
model as well as a set of compliance requirements allow for many conforming traces.
Each state of a trace is labeled with propositions that refer to actions and results. Actions
are the driving force of a trace and refer to the execution of business activities. This, in
turn, may effect or be constrained by results, which relate to data values of the business
process. As an example, think of an activity ‘risk analysis’ (ra) and a data object ‘risk’.
The action that represents the execution of this activity may have the result of setting the
state of the data object to ‘high’ or ‘low’. The execution of another activity, i.e., another
action, may be allowed to happen solely if a certain result, e.g., the object has been set

2

to ‘high’, occurred. Both, actions and results, are represented by Boolean propositions at
each state. For instance, proposition ra being ‘true’ at a state si means that the action,
i.e., execution of activity ‘risk analysis’, has happened at state si. In contrast, proposition
ra being ‘false’ at state si means that the action did not happen at state si. Given a trace
σ : s0, s1, . . . , sn, we write p ∈ si to indicate that proposition p is true in state si, for
0 ≤ i ≤ n and p ∈ σ if there is a state si in σ where p ∈ si, for some 0 ≤ i ≤ n.

We represent an execution sequence as a linear sequence of states where states are
labelled with both actions and results, and (unlabelled) edges between states represent
the temporal ordering in the sequence. Hence, we rely on Linear Temporal Logic (LTL)
in order to formulate statements about traces.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) [18] is a logic specifically designed for expressing and
reasoning about properties of linear sequences of states. The formulae of LTL are built
from atomic propositions using the connectives of ∨ (or), ∧ (and), ¬ (not) and ⇒
(implication), and the following temporal connectives: X (next), F (eventually), G
(always), U (until) and B (before). The latter are interpreted as follows:
X ϕ: in the neXt state, ϕ holds
F ϕ: there is some state either now or in the Future where ϕ holds
G ϕ: in every state Globally from now on, ϕ holds
ϕ U ψ: there is some state, either now or in the future, where ψ holds, and ϕ holds in

every state from now Until that state
ϕ B ψ: Before ψ holds, if it ever does, ϕ must hold.
We apply LTL to encode compliance requirements. Hence, we obtain a set of formulae
Γ expressing the constraints to which compliant traces have to conform.

2.3 Finding All LTL-Models of a Given LTL Formula

Given a collection of compliance requirements expressed as a set Γ of LTL-formulae,
we seek to find a behavioral model that captures all formula-models, i.e., traces in our
setting, which satisfy Γ . That is, such a model describes all linear sequences of states
s0, s1, . . . , sn such that Γ is true at s0. Since Γ may contain eventualities, such as X ϕ
or ψ1 U ψ2, ensuring that Γ is true at s0 may require us to ensure that ϕ is true at s1 or
ψ2 is true eventually at some state si with 0 ≤ i ≤ n. In contrast to model checking [5]
we are not given a single trace, but construct all traces satisfying the given constraints.

The first step is to determine whether the constraints are satisfiable. If not, the
specification is erroneous since no trace can conform to the given constraints. The
second step is the creation of the behavioral model that describes all traces.

For both steps, we use a tableaux-based method introduced in [25, 24]. In essence, this
approach works as follows. We start by creating a root node containing Γ and proceed in
two phases. First, a finite (cyclic) graph of tableau nodes is created by applying tableau-
expansion rules that capture the semantics of LTL and by pruning nodes containing local
contradictions [25]. Second, once the graph is complete a reachability algorithm is used
to determine which nodes do not satisfy their eventualities. These nodes are removed
and the reachability algorithm is reapplied until no nodes may be removed. The set of

3

Collect related

compliance

rules in LTL

Add extra

domain

knowledge in

LTL

Check LTL

satisfiability;

generate

pseudomodel

Is there a

pseudomodel?

Rules are

inconsistent

No

Extract traces
Generate

process model

Yes

No

Analyze

generated

model

Are there any

descrepencies?

Yes

Refine

compliance

rules or domain

knowledge

Analyze traces

Is it possible to

generate a

process model?

Yes

No

Fig. 1: Process Synthesis Approach

formulae Γ is satisfiable, if and only if the root node has not been removed [25]. Further,
the graph created by the tableau algorithm, referred to as the pseudomodel, describes all
possible formula-models, i.e., possible traces [25]. We use this pseudomodel to extract
possible traces during our synthesis approach.

3 Synthesis of Process Templates from Compliance Rules
In this section, we describe our approach to the synthesis of process models from a set
of compliance rules expressed in temporal logic. First, Section 3.1 gives an overview
of the approach and introduces an example set of compliance rules used to illustrate all
subsequent steps. Section 3.2 describes the LTL encoding of the compliance rules and
additional domain knowledge. Section 3.3 elaborates on the extraction of traces from a
behavioral model, while Section 3.4 focuses on consistency of these traces. Synthesis of
a process template from these traces is discussed in Section 3.5. Finally, we elaborate on
the evaluation of synthesized templates in Section 3.6.

3.1 Overview

The process model in Fig. 1 visualizes the steps to synthesize a process template out
of a set of compliance rules. First, a set of compliance rules is collected. In order to
identify whether these requirements are consistent and thus a process template can be
synthesized, related domain-specific knowledge is identified. In Section 3.2 we give
details on the LTL encoding of both compliance rules and domain knowledge.

For the conjunction of these LTL formulae, we verify satisfiability as it has been
summarized in Section 2.3. If the set is not satisfiable then no trace can be constructed to
satisfy the given LTL formulae so the inconsistency is reported to the user. If the set is
satisfiable then the satisfiability checker automatically returns the pseudomodel which is
a behavioral model of all traces that obey the given constraints.

As a next step, finite traces are extracted from the pseudomodel by following all
choice points and stopping when a trace becomes cyclic. We focus on this step in
Section 3.3. Having a finite set of traces that satisfy the compliance rules, we check it
for consistency. This check guarantees that a template can be generated. Inconsistent
traces hint at issues in the specification, so that a new iteration of the synthesis may be

4

started with refined compliance rules or adapted domain knowledge. We focus on the
analysis of traces in Section 3.4. If the traces are consistent, we apply a process synthesis
algorithm to extract a process template. Details on this step are given in Section 3.5.
The synthesized template is then analyzed to identify discrepancies that stem, e.g., from
underspecification. Depending on the result of this analysis, again, a new iteration of the
synthesis may be started. We discuss the evaluation of process templates in Section 3.6.

Example. We illustrate our approach with an example from the financial domain.
Anti money laundering guidelines [6] address financial institutes, e.g., banks, and define
a set of checks to prevent money transfers with the purpose of financing criminal actions.
We focus on the following guidelines for opening new bank accounts:
R1: A risk assessment has to be conducted for each ‘open account’ request.
R2: A due diligence evaluation has to be conducted for each ‘open account’ request.
R3: Before opening an account the risk associated with that account must be low.

Otherwise, the account is not opened.
R4: If due diligence evaluation fails, the client has to be added to the bank’s black list.

3.2 LTL Encoding

Once the compliance rules have been collected, a behavioral model that represents all
traces conforming to these rules is created. In order to arrive at such a model, we need to
collect extra domain-specific rules. Much of the domain-specific rules can be generated
automatically from a higher level description. Such a description needs to be defined by
a human expert in the first place and comprises the following information.
Actions and Goals. The set of all actions is denoted by A. The set of goal actions

G ⊂ A comprises activities that indicate the completion of a trace. Moreover, we
capture contradicting actions that are not allowed to occur together in one trace in a
relation CA : A× 2A.

Results and Initial Values. The set of all results is denoted by R. The initial values of
data objects are defined by a set IV ⊂ R. Further, we define the set of negated results
as R = {¬r|r ∈ R}. Similar to contradicting actions, we capture contradicting
results in a relation CR : R× 2R.

Relation between Actions and Results. The mapping from actions to sets of results is
given as a relation AM : A× 2R∪R. Mutually exclusive sets of results are captured
in a relation RE = {S : ∃a ∈ A.(a, S) ∈ AM ∧ S 6= ∅}.

Based on this information and two additional actions start and end that represent the
initial and final states of a trace (independent of any goal states), we derive LTL rules
to represent the domain knowledge according to Table 1. Common process description
languages, e.g., BPMN or EPCs, assume interleaving semantics, which is enforced by
formula interleaving and progress. The information on exclusiveness constraints and
on contradicting actions and results yields the formulae mutex and contra. The formula
causality guarantees correct implementation of dependencies between actions and
results. Finally, the formulae once, final , goals, and initial ensure correct initialization
and successful termination of any trace. The combination of all these formulae yields
the formula domain, which represents the domain knowledge.
domain =start ∧G initial ∧ F goals ∧ F end ∧G interleave ∧G progress

∧G mutex ∧G causality ∧G once ∧G contra ∧G final

5

Table 1: The formulae making up the domain knowledge
Constraint Description Formalization

To realize interleaving semantics, the formula
interleave ensures that at most one action can be
true, i.e., one activity can be executed, at any state.

interleave(a) = a⇒ (
∧

b∈A\{a} ¬b))
interleave =

∧
a∈A interleave(a)

The formula progress guarantees that at least one
action occurs at each state.

progress =
∨

a∈A a

The mutual exclusion constraints given in RE are
enforced by the formula mutex, i.e., exclusive
results cannot be true at the same time.

mutex(S) =
∧

a,b∈S, a 6=b ¬(a ∧ b)
mutex =

∧
S∈RE mutex(S)

Knowledge on contradicting actions or results is
taken into account by the formulae, con and
conRes.

con(a) = a⇒ G
∧

b∈CA(a) ¬b
conRes(r) = a⇒ G

∧
s∈CR(r) ¬s

contra =
∧

a∈A∪R con(a) ∧ conRes(a)

To implement the relation between actions and
results, formula cau1 states that for every entry
(a, S) ∈ AM the action a must cause at least one
of the results in S. Formula cau2 states that for
every result r, that result can only be changed by
one of the actions which can cause it.

cau1(a, S) = a⇒
∨

r∈S r
cau2(r) =
r ⇒ (X

∨
(a,S)∈AM, {r,¬r}∩S 6=∅ a) B ¬r

causality =∧
(a,S)∈AM cau1(a, S) ∧

∧
r∈R∪R cau2(r)

The formula once enforces that all actions other
than end occur at most once, in order to avoid
infinite behavior. The formula final enforces that
end persists forever to represent the process end.

once(a) = a⇒ X G ¬a
once =

∧
a∈A\{end} once(a)

final = end⇒ G end

The formula goals is used to require that eventually
the outcome of the process is determined, while
inital ensures correct initial values for all objects.

goals =
∨

g∈G g

initial = start⇒
∧

v∈IV v

Example. For our example, an expert first identifies the following actions and results.
Actions = {ra, edd, og, od, bl} Results = {ri, rh, rl, ei, ef , ep}
ra: conduct a risk assessment ri: risk assessment is initial

edd: evaluate due-diligence rh: risk was assessed as high

og: grant a request to open an account rl: risk was assessed as low

od: deny a request to open an account ei: due-diligence evaluation is initial

bl: blacklist a client. ef : due-diligence evaluation failed

ep: due-diligence evaluation passed.
Note that the results are all descriptive statements, while the actions refer to activities.
Moreover, we introduce positive representations for the states ‘high’ and ‘low’ of the risk
object, even though both states are opposed. That is due to the three possible states of
the risk object: high, low, or initial. The same holds true for the the due-diligence object.

Based on these actions and results, the compliance rules are encoded in LTL. As a
process to open a bank account is considered, the process is assumed to start by receiving
such a request. Therefore, rules 1 and 2 are interpreted as “A risk assessment has to be
conducted” and “A due diligence evaluation has to be conducted”, respectively. The third

6

rule is interpreted to mean that the risk associated with opening an account must be low
at the time the request is granted, rather than at some point in the past. Similarly is the
case when denying the open request, the risk has to be high.

R1: A risk assessment has to be conducted.
F ra “Eventually ra must hold”

R2: A due diligence evaluation has to be conducted.
F edd “Eventually edd must hold”

R3: The risk associated with opening an account must be low when the request is
granted.
G (og ⇒ rl) ∧G (od⇒ rh) “Always, og only if rl, and always, od only if rh”

R4: If due diligence evaluation fails, the client has to be added to the bank’s black list.
G (edd ∧ ef ⇒ F bl) “Always, edd and ef imply eventually bl”

As a next step, the domain knowledge is defined in more detail. For instance, the action
mapping defines ra 7→ {rh, rl} and ra 7→ {¬ri}. The former says that action ra
causes the risk object to take a concrete value of ‘high’ or ‘low’. The latter means that
ra causes the risk to stop being ‘initial’ by forcing ri to not hold. Excluding results
are defined, e.g., {ri, rl, rh} states that at most one of the propositions ri, rh, rl can
hold at a time. The goal of the process is defined as {og, od} and the set of initial
values {ri, ei} signifies that initially, both risk and due-diligence objects, are put to an
initial, unknown, value. There are also contradicting actions, {og 7→ {od}, od 7→ {og}},
ensuring that we cannot grant and deny a request within the same trace. Based on
Table 1, this specification is converted into LTL. For example, this yields the formula
progress = ra∨ edd∨ og ∨ od∨ bl∨ start∨ end. The final set of LTL formulae is the
union of the domain formula with all four formulae representing the compliance rules.

3.3 Extracting Traces

Given a set of LTL formulae, we apply the technique summarized in Section 2.3 to
determine whether the constraints are satisfiable. If so, we obtain a pseudomodel that
describes all traces that conform to the set of formulae. To create a process template, these
traces are extracted. Any sequence σ = s0, . . . , sn of states, starting at the root node
of the pseudomodel can be extended into a trace. As we are modeling finite sequences
with an end state, we consider a trace to be complete if end ∈ sn. Because of the once
constraint introduced in the previous section, there will be no loops in the pseudomodel
between the start and the end. Hence, the finite set of paths in the pseudomodel between
the root state and a state labeled with end is the set of correct traces.

Note that it is possible to extract traces that take repetition of activities into account
by omitting the once constraint in the domain knowledge. Still, for our purpose, this
does not seem to be appropriate. Compliance rules rarely forbid the repetition of activity
execution, so that modeling all potential loops blurs up the structure of a generated
process template. As this hinders discussions between business and compliance experts,
we neglect potential repetition for our synthesis approach.

Example. Some of the traces extracted from the pseudomodel of our running ex-
ample are illustrated in Table 2. Here, the states of a trace are characterized by the
conjunction of propositions that hold true in the respective state.

7

Table 2: Excerpt of the extracted traces
σ1 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, bl ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
σ2 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
· · ·
σ37 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
· · ·
σ42 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, ra ∧ rl ∧ ei, og ∧ rl ∧ ei, edd ∧ ep ∧ rl, end ∧ ep ∧ rl

3.4 Analysis of Extracted Traces

As stated earlier, the goal of synthesizing a process template out of compliance rules
is to support experts in getting a better understanding of the compliance aspects and to
discover missing or under-specified requirements. However, it is possible to detect such
under-specification by analysis of extracted traces before proceeding to synthesizing a
process template. Yet, not every semantical error in the specification can be detected,
so that a human expert has to validate the synthesized process template. We address the
issue of under-specified LTL specification by correctness criteria for the extracted traces.

Let P be a set of traces derived from a pseudomodel, cf., Section 3.3. We leverage
the information whether an action a ∈ A is optional for completing the process.

Definition 1 (Optional Actions). Given a set of actions A and a set of traces P , the set
AO of optional actions is defined as AO = {a ∈ A|∃ σ ∈ P : a 6∈ σ}.

We argue that correctness of a specification where some activity is optional implies the
existence of a specific data condition under which the optional activity is executed. For
the traces in Table 2, for instance, og and od are optional activities. The condition under
which og executes is (rl ∧ ef) ∨ (rl ∧ ep) ∨ (rl ∧ ei), i.e., the risk object assumes the
state ‘low’. Action og is executed independently from the state of the due diligence
evaluation object. For action od the condition is (rh ∧ ef) ∨ (rh ∧ ep) ∨ (rh ∧ ei), i.e.,
the risk is ‘high’. In contrast, action bl is executed under the condition (ei ∧ ri) ∨ (ei ∧
rh)∨ (ei∧ rl)∨ (ef ∧ ri)∨ (ef ∧ rh)∨ (ef ∧ rl)∨ (ep∧ rh)∨ (ep∧ rl)∨ (ep∧ ri).
Hence, none of the objects influences the decision of executing bl, since bl appears with
all combinations of data values. Yet, bl is optional. This indicates an under-specified
LTL specification as conditions for executing optional activities are not stated explicitly.

Definition 2 (Optional Action Execution Condition). Let AO be the set of optional
actions, P a set of traces, and RE the set of mutually exclusive results. For an action
a ∈ AO, the execution condition is defined as:
conda = {{x1, . . . , xn} : ∃ σ ∈ P.∃ s ∈ σ.a ∈ s ∧ x1 ∈ s ∧ x1 ∈ S1 ∧ S1 ∈
RE ∧ · · · ∧ xn ∈ s ∧ xn ∈ Sn ∧ Sn ∈ RE ∧ n = |RE|}}.

This definition describes the conditions under which an action executes by investigating
for each observation of the action a the data effects that are true in the same state as
a. If an optional activity a has an execution condition, which is a proper subset of
the combination of non-exclusive results, then this indicates a well specified set of
compliance rules. We formalize this trace correctness criterion as follows.

8

Definition 3 (Proper Execution of Optional Actions). Let AO be the set of optional
actions with respect to a set of traces P and RE the set of mutually exclusive results.
We define the set of all possible results interactions as RI = {{x1, . . . , xn} : x1 ∈
S1 ∧ S1 ∈ RE ∧ · · · ∧ xn ∈ Sn ∧ Sn ∈ RE ∧ n = |RE|}. An action a ∈ AO has a
proper execution iff conda ⊂ RI .

The proper execution of actions is the first correctness criterion to be investigated on
traces before synthesizing a template. Referring to the set of traces in Table 2, we find
that this criterion is not met for activity bl. This problem is reported to the user so that
the compliance rules are refined and a new set of traces is extracted.

Another correctness criterion for a set of traces is data-completeness. A set of
traces P is data-complete if for every possible combination of results resulting from the
mandatory activities, there is a trace in which this combination occurs.

Definition 4 (Traces Data-Completeness). Let P be a set of traces, AM be the set
of action mappings, AM = A \ AO be the set of mandatory actions and REM =
{S : ∃a ∈ AM .(a, S) ∈ AM ∧ S 6= ∅} be the set of mutually exclusive results
of mandatory actions. We define the set CO = {{x1, . . . , xn} : x1 ∈ S1 ∧ S1 ∈
REM ∧ · · · ∧ xn ∈ Sn ∧ Sn ∈ REM ∧ n = |REM |}. The set of traces P is data-
complete iff ∀ C ∈ CO ∃ σ ∈ P ∃ si ∈ σ : ∀ x ∈ C x ∈ si where i > 0.

Even if data incompleteness is detected for a set of traces, a process template may
be generated. Nevertheless, the template would suffer from deadlocks as for some
combinations of results, continuation of processing is not defined. Therefore, we proceed
solely in case the set of traces shows data completeness.

Example. For our running example, we find that the set of traces lacks the proper
execution condition for activity bl. To address this issue, a compliance expert might add
an explicit condition to black list a client only if the evaluation fails. This is represented
by an additional constraint G (bl⇒ ef). Repeating all steps from satisfiability checking
to extracting traces yields a set of traces that satisfies the two correctness criteria above.

3.5 Generating Process Templates

Given a set of traces within which activities have proper execution conditions, process
mining [22] is applied to generate a process template. Most mining algorithms neglect
the difference between control flow dependencies and data flow dependencies when
generating a process model. Therefore, we cannot apply an existing algorithm directly.
Instead, we use the α-algorithm [22] and incorporate the respective data aspects.

Order of actions. As a first step, we extract the precedence of actions. To this end,
we employ an adapted version of the order relations known from the α-algorithm [22].

Definition 5 (Order Relations). Let P be a set of traces and A the sets of actions. We
define the following order relations for two actions a1, a2 ∈ AwithRa2

=
⋃

(a1,S)∈AM S
as the set of results of a2.
a1 > a2: iff either

Ra2
= ∅ (i.e. a2 has no results), and there is atrace σ : s0, . . . , sn ∈ P , such that

a1 ∈ si ∧ a2 ∈ si+1 for some 0 ≤ i < n, or

9

Ra2
6= ∅ (i.e. a2 has results), and ∀ r ∈ Ra2

there is a trace σ : s0, . . . , sn ∈ P ,
such that a1 ∈ si ∧ a2 ∈ si+1 ∧ r ∈ si+1 for some 0 ≤ i < n.

a1 � a2: iff a1 > a2 and a2 6> a1
a1 → a2: iff a1 � a2 and @ a3 ∈ A : a1 �+ a3 ∧ a3 � a2 with �+ as the transitive

closure of �

For two actions ordered by >, we know that the first action appears immediately before
the second action. This notion of order is stronger than the one originally used in the
α-algorithm [22]. If a1 > a2 and a2 6> a1, then we conclude that a1 precedes a2, i.e.,
a1 � a2. However, it might be the case that a1 � a2, a2 � a3 and a1 � a3. In this
case, we drop the dependency a1 � a3 as it unnecessarily complicates the template
synthesis. Thus, we use the more strict precedence relation→.

In contrast to common order relations known in process mining, the precedence
dependencies in our approach may be guarded by conditions, captured as follows.

Definition 6 (Precedence Condition). Let P be a set of traces, A the sets of actions,
AM the mapping from actions to results, and a1, a2 ∈ A two actions in precedence,
a1 → a2. Let E = {r|r ∈

⋃
(a1,S)∈AM S∧ (∃ σ = s0, . . . , si, si+1, . . . , sn ∈ P : a1 ∈

si ∧ r ∈ si ∧ a2 ∈ si+1)} be the set of results of a1 under which a2 is observed. Then,
we define the precedence condition cond(a1, a2) as follows.

cond(a1, a2) =

{∨
r∈E iff E ⊂

⋃
(a1,S)∈AM S ∧ E 6= ∅.

true otherwise.

According to this definition, we distinguish two types of precedence conditions. First,
precedence holds for a proper subset of the results of the first action. Then, the precedence
condition is the disjunction of results that can be caused by the first action. The second
case captures unconditioned precedence, i.e., the precedence holds independent of any
results. For our running example, we observe ra→ og. This precedence is guarded, as
we observe this dependency solely in case of the result rl. In other words, only if action
ra yields the result rl, we observe the action og subsequently.

Synthesis of process model. Based on the precedence among activities, the prece-
dence conditions, along with the knowledge on optionality of activities, we proceed to
build a process template. First, the overall structure of a process model is derived from
the precedence relation. This step yields a graph with all nodes representing actions,
while the precedence relation defines directed edges between them. Second, control
nodes (split and join nodes) that realize the behavior routing in the process model have
to be introduced whenever a node has more than one predecessor or successor.

Starting with split nodes, our approach inserts nodes that implement either AND-,
XOR-, or OR-logic. The routing semantics depends on the precedence conditions for the
edges to succeeding nodes. If all precedences originating at an action are unconditioned,
an AND-split node is inserted. If all precedences are conditioned and those conditions do
not overlap, an XOR-split node is inserted and each outgoing edge inherits the respective
precedence condition. Similarly, an OR-split is applied if the conditions are overlapping.

The case of join nodes, nodes with multiple predecessors, is not straightforward. We
distinguish the following cases.

– All precedences of an action a are conditioned, we use an AND-join to synchronize
these conditions.

10

– Only a proper subset of precedences of an action a is conditioned, we use an OR-join
to synchronize any subset of these conditions.

– All precedences of an action a are unconditioned. If a is mandatory, we apply either
an OR-join or an AND-join. The former is used if at least one of the preceding
actions is optional; the latter is used in all other cases. If a is optional, we proceed
as follows. An AND-join is applied to synchronize all precedences. Moreover, for
all combinations of results of preceding actions of a, we check for a state in which
the execution of a is observed as well. In other words, we identify all combinations
of results of preceding actions under which a can occur. The disjunction of these
result combinations is then used as a precedence condition for the edge between the
AND-join and action a.

Applying these steps yields a process template. Still, our approach to model synthesis
is rather naive and may create OR-joins for which the synchronization behavior could
be implemented using solely AND- and XOR-joins. However, existing methods for
restructuring a process model are used to replace these OR-joins with a semantically
corresponding structure of AND- and XOR-joins, see [23].

og

bl

ra

edd

ef

ep

od

rl

rh

Fig. 2: Precedence among actions

Example. After we adapted the set of con-
straints for our running example as discussed
above, we derive the basic graph structure for
the template based on the precedence relation.
Fig. 2 visualizes this structure in a BPMN-like
notation. Here, the start and end actions are repre-
sented by start and end events. Activities depicted
with a dashed border are optional. After inserting
control nodes (aka gateways in BPMN) into the
graph, the complete process template is derived.
The first version of the generated process template is shown in Fig. 3a. Application of
the restructuring according to [23] yields the process template shown in Fig. 3b.

og

bl

ra

edd ef

ep

od

rl

rh

(a)

og

bl

ra

edd ef

ep

od

rl

rh

(b)

Fig. 3: (a) The process template for our example. (b) The restructured process template.

3.6 Evaluation of the Synthesized Process Template

Process templates aim at supporting experts in getting a better understanding of the
compliance aspects and to discover missing or under-specified requirements. Such under-
specification is manifested in the process template in terms of semantical problems.

11

Those problems can only be detected by human experts. In this section, we will further
elaborate on the running example to illustrate such problems. Using the process template
in Fig. 3a as a basis of the discussion between compliance expert and business expert, they
identify that the template allows for executing both black listing the client and granting
to open the account in the same instance. This is an example of the aforementioned
semantical problems caused by under-specified compliance rules. The compliance expert
refines the set of constraints by indicating that black listing and granting open the account
are contradicting, cf. the CA relation in Section 3.2, formalized as G (og ⇒ G (¬bl))
and G (bl ⇒ G (¬og)). Repeating the steps of our approach reveals that the adapted
set of compliance rules yields a set of traces that is data incomplete. This is explained
based on the two added constraints as follows. By forcing bl and og to be exclusive, we
implicitly require bl to be executed only with the condition ef ∧ rh, while og is executed
only with the condition ep ∧ rl. Other combinations of results are not considered. There
is no trace that addresses the situation where ef ∧ rl holds in some state. This contradicts
with our requirement to execute either og or od in each run. Since the condition ef ∧ rl
enables neither of them, it is not observed in any of the generated traces.

og

bl

ra

edd ef

od

rl

ep

(ep & rh) |
(ef & rh) |
(ef & rl)

Fig. 4: A compliant process template where bl
and og are exclusive and conditions adjusted

As a consequence, another adapta-
tion of our set of compliance require-
ments is needed. The missing interac-
tion ef ∧ rl has to be handled. One
solution is to update the conditions un-
der which og and od are executed, i.e.,
G (og ⇒ ep ∧ rl) and G (od ⇒
(ef ∨ rh)). With these updated con-
straints, another iteration of behavior
synthesis is started. This time, the gen-
erated set of traces shows data com-
pleteness. The final generated process
template is visualized in Fig. 4.

4 Implementation

We created a prototypical implementation to validate our approach. Fig. 5 shows a
snapshot of it. It relies on a specification of domain knowledge, such as activity results
and contradicting activities, which has to be defined once by a human expert. Given
a set of compliance rules, our implementation adds extra rules to control the behavior
synthesis and to enforce domain knowledge automatically. The satisfiability checking
is done by an implementation of Wolper’s method for checking LTL satisfiability [25]
developed by the authors at the School of Computer Science of the Australian National
University3. If the rules are satisfiable, the checker generates the pseudomodel of all
possible traces. Next, our implementation extracts finite traces, analyzes them and
synthesizes the process template, if the extracted traces pass quality tests, cf. Section 3.4.
At that point, the resulting template is visualized using GraphViz [7]. In case that traces
do not pass checks, the found problems are reported on the “Analysis result” tab.

3 Source code available at http://users.cecs.anu.edu.au/∼rpg/PLTLProvers/pltlmultipass.tar

12

There is the potential for a state space explosion, especially since the additional
constraints of the process are unrestricted logical formulae. Even without pathological
constraints, if there is a lot of freedom or non-local conditions then the satisfiability
checking phase can take a considerable amount of time. The once constraint helps to
limit this, and too much freedom can often be a sign that other conditions have been
omitted. We aim evaluating these issues in further case studies.

Fig. 5: A snapshot of the process synthesis tool

5 Related Work
Compliance checking of business process models with a focus on execution order
constraints has been approached from two angles: namely compliance by design and
compliance checking of existing models. The latter has been tackled using model
checking techniques [4, 8, 12]. Our work follows a compliance by design approach that
has also been advocated in [9–11, 13, 14, 26]. Close to our work, the authors of [10,
9] employ temporal deontic assignments to specify what can or must be done at a
certain point in time and synthesize a process template from these assignments. In
contrast to our work, however, the approach is limited to temporal dependencies between
activity executions and the underlying logic requires an encoding of these dependencies
via explicit points in time. Another approach to synthesize compliant processes was
introduced in [26]. The authors employ a set of compliance patterns expressed in Linear
Temporal Logic (LTL). For each pattern a finite state automaton (FSA) is defined. To
synthesize a process, the FSAs of the involved patterns are composed. Next, the user
is required to select for each composition an execution path in order to synthesize the

13

process. That approach is able to generate processes with sequence and choice only.
Moreover, it does not consider data flow aspects in the synthesized process.

Related to our approach to process model synthesis is work on process mining, which
aims at automatic construction of a process model from a set of logs [3, 22, 21]. We
adapted the α-algorithm [22], a standard mining approach, for our purposes. Besides
the commonalities, there are some important differences between process mining and
process template synthesis. We consider control flow routing based on data values. This
aspect is often neglect in process mining algorithms. Only recently, time information
and data context have been considered when predicting the continuation of a trace based
on its current state [19, 20]. Further, process mining approaches have to be robust against
incorrect data (log noise). As we derive a model from artificially generated traces, this is
not an issue for our approach.

Work on declarative business process modeling is also related to our work. The
authors of [17, 16] propose to model processes by specifying a set of execution ordering
constraints on a set of activities. These constraints are mapped onto LTL formulas; which
are used to generate an automaton that is used to both guide the execution and monitor
it. That is similar to our approach of generating a pseudomodel. Recently, the authors
also showed how finite traces that respect interleaving semantics can be extracted from a
set of LTL constraints [15]. The major difference from our work is that [15] does not
model data constraints as we do. They also change the semantics of LTL rather than by
using standard LTL as we do. Finally, we initially tried the approach of extracting Büchi
automata from our LTL specifications for our example, but found that the automata
approach required hours to return the automata whereas our LTL satisfiability checker
returns a pseudomodel in less than a second.

6 Conclusion
In this paper, we introduced an approach to synthesize business process templates out
of a set of compliance rules expressed in LTL. We also showed that extra domain-
specific knowledge is required to decide about consistency of such requirements and
introduced an LTL encoding for compliance rules and domain knowledge. This was used
to generated traces, which are analyzed for inconsistencies. Finally, we proposed an
approach to the synthesis of process templates that goes beyond existing work on process
mining by focusing on data dependencies of activity execution. We also discussed the
analysis of generated templates with respect to semantical errors.

In our approach, we addressed control- and data-flow aspects of compliance rules, in
contrast to similar approaches that focus on control-flow aspects only. The consideration
of data-flow aspects comes with new challenges which we addressed in this paper by
introducing correctness criteria for the set of generated traces. We illustrate that data
dependencies may show rather interactions that are hard to handle at the first place. As a
consequence, our approach is iterative – the required knowledge is built incrementally
each time constraints are under-specified. In future work, we want to consider constraints
on role resolution for generating process templates.

References
1. Sarbanes-Oxley Act of 2002. US Public Law 107-204, 2002.

14

2. Advanced Information Systems Engineering, 22nd International Conference, CAiSE 2010,
Hammamet, Tunisia, June 7-9, 2010. Proceedings, volume 6051 of LNCS. Springer, 2010.

3. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow logs. In
EDBT, volume 1377 of LNCS, pages 469–483. Springer, 1998.

4. A. Awad, M. Weidlich, and M. Weske. Visually specifying compliance rules and explaining
their violations for business processes. J. Vis. Lang. Comput., 22(1):30–55, 2011.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
6. F. S. Commission. Guidelines on anti-money laundering & counter-financing of terrorism,

2007.
7. J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. Graphviz - open source

graph drawing tools. In Graph Drawing, pages 483–484, 2001.
8. A. Förster, G. Engels, T. Schattkowsky, and R. Van Der Straeten. Verification of Business

Process Quality Constraints Based on VisualProcess Patterns. In TASE, pages 197–208. IEEE
Computer Society, 2007.

9. S. Goedertier and J. Vanthienen. Compliant and Flexible Business Processes with Business
Rules. In BPMDS, volume 236 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

10. S. Goedertier and J. Vanthienen. Designing Compliant Business Processes from Obligations
and Permissions. In (BPD), volume 4103 of LNCS, pages 5–14. Springer Verlag, 2006.

11. R. Lu, S. Sadiq, and G. Governatori. Compliance Aware Business Process Design. In BPM
Workshops, volume 4928 of LNCS, pages 120–131. Springer, 2007.

12. Y. Lui, S. Müller, and K. Xu. A Static Compliance-checking Framework for Business Process
Models. IBM SYSTEMS JOURNAL, 46(2):335–362, 2007.

13. Z. Milosevic, S. Sadiq, and M. Orlowska. Translating Business Contract into Compliant
Business Processes. In EDOC, pages 211–220. IEEE Computer Society, 2006.

14. K. Namiri and N. Stojanovic. Pattern-Based Design and Validation of Business Process
Compliance. In OTM Conferences (1), volume 4803 of LNCS, pages 59–76. Springer, 2007.

15. M. Pesic, D. Bosnacki, and W. M. P. van der Aalst. Enacting declarative languages using ltl:
Avoiding errors and improving performance. In SPIN, volume 6349 of LNCS, pages 146–161.
Springer, 2010.

16. M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DECLARE: Full Support for Loosely-
Structured Processes. In EDOC, pages 287–300. IEEE Computer Society, 2007.

17. M. Pesic and W. M. P. van der Aalst. A Declarative Approach for Flexible Business Processes
Management. In BPM Workshops, volume 4103 of LNCS, pages 169–180. Springer, 2006.

18. A. Pnueli. The temporal logic of programs. In SFCS, pages 46–57, Washington, DC, USA,
1977. IEEE Computer Society.

19. H. Schonenberg, J. Jian, N. Sidorova, and W. M. P. van der Aalst. Business trend analysis by
simulation. In CAiSE [2], pages 515–529.

20. W. M. P. van der Aalst, M. Pesic, and M. Song. Beyond process mining: From the past to
present and future. In CAiSE [2], pages 38–52.

21. W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen, A. K. A.
de Medeiros, M. Song, and H. M. W. E. Verbeek. Business process mining: An industrial
application. Inf. Syst., 32(5):713–732, 2007.

22. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.

23. J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser. Automatic workflow graph refactoring
and completion. In ICSOC, volume 5364 of LNCS, pages 100–115, 2008.

24. P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72–99, 1983.
25. P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 110-

111:119–136, 1985.
26. J. Yu, Y. Han, J. Han, Y. Jin, P. Falcarin, and M. Morisio. Synthesizing service composition

models on the basis of temporal business rules. J. Comput. Sci. Technol., 23(6):885–894,
2008.

15

